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a b s t r a c t

Our work is focused on the problem of theoretical evaluation of the surface shape of a variable focus
membrane lens. In order to be able to determine the imaging properties of such a lens one has to know
the shape of the membrane for a given pressure of the liquid inside the lens chamber with high accuracy.
In our work a generalized nonlinear differential equation describing this problem is derived and the
solution of this equation using expansion into series and transformation of the problem into constraint
optimization problem is proposed. The proposed method enables us to calculate the shape of a
membrane lens surface with satisfactory accuracy for further calculations such as e.g. calculation of
aberrations of such a lens, imaging properties etc.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In these days the field of optical elements with variable focal
length based on different physical principles is rapidly developing
[1–13]. One possible way to realize a variable-focus lens is to use a
thin elastic membrane clamped at the edge as one optical surface
of a liquid lens of appropriate construction [4–13]. Fig. 1 shows a
simple scheme of such a lens.

By changing the volume of the liquid in the chamber of the lens
(i.e. changing the pressure p) one can continuously change the
shape of the membrane which results in a change of the focal
length of the lens. In order to be able to describe imaging
properties of such liquid lens it is necessary to know the shape
of the membrane as accurately as possible. While in mechanical
and construction engineering the error of 5% in the determination
of the deflection of a plate (membrane) is satisfactory enough in
the field of optics such error is totally unacceptable. Assuming that
n and n0 are refractive indices of the media in front of and behind
the optical refractive surface and δs is the error of the meridian of
this surface then the wave aberration δW due to this error is
approximately given by the well known relation δW ¼ ðn0 �nÞδs. In
case that we choose e.g. n0 ¼ 1:5; n¼ 1 and we set a requirement
on the maximum tolerable change in the wave aberration
δW ¼ λ=10, where λ is the wavelength of light, then according to

the above mentioned relation the acceptable change in the shape
of the optical surface δs is given by δsrλ=5. Choosing wavelength
λ¼ 0:00055 mm one obtains δsr0:00011 mm. The shape of the
membrane therefore must be determined at minimum with such
accuracy.

The problem of elastic deformations of membranes is treated in
many books and journal papers e.g. [14–22]. Problem of the plates
and membranes with variable thickness is discussed e.g. in
[14,15,17,20]. The detailed overview of books dealing with this
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Fig. 1. Scheme of a pressure actuated membrane liquid lens.
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problem is given in [18]. Membrane liquid lenses can be also used
as elements of microlens matrix arrays (more detailed information
can be found e.g. in [23,24]).

In practical applications, it is needed to reduce the influence of
gravity on the membrane deformation because it may decrease the
lens performance. It was shown that the effect of gravity induced
aberration can be negligibly small by a proper selection of the lens
diameter, liquid density, membrane elasticity, and fluid pressure
[19].

The aim of our work is to calculate the theoretical shape of the
surface of the above mentioned membrane liquid lens with the
accuracy that would satisfy the requirements on the optical sur-
face quality.

2. Theory of large deflections of thin circular membrane
clamped at the edge under uniform pressure

Let us assume the liquid lens shown schematically in Fig. 1 i.e.
one of the optical surfaces is a circular membrane of thickness h
and diameter Dmembr ¼ 2a, which is clamped at the edge. For the
calculation of the deflection of the membrane we will start from
the relations for calculation of tangential Nt and radial Nr tensile
forces per unit length in an absolutely elastic circular membrane
under uniform pressure clamped at the edge, it holds [14–17]

Nt ¼
d
dr

ðrNrÞ�pr
dw
dr

; ð1Þ

Nr
dw
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¼ �pr
2
; ð2Þ

where p is the uniform pressure acting on the membrane, w is the
lateral deflection of the membrane (deflection in the direction of
the z-axis i.e. axis going through the center of the membrane
perpendicularly to the membrane surface) and r is the radial
distance of the element of the membrane from the z-axis. Assum-
ing linear elastic medium the Hooke's law can be expressed as
[14,15].
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whereas u is the radial displacement, E is the Young's modulus
(modulus of elasticity), μ is the Poisson's ratio and h is the
membrane thickness. In the classical solution of the problem
[17] the second term on the right hand side of Eq. (6) is neglected.
The results obtained using the classical theory are therefore
affected by this approximation. Let us now focus on the solution
of the problem using the exact relations given by Eqs. (3)–(6).
By differentiation of Eq. (5) we obtain
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: ð7Þ

By solving Eqs. (1)–(6) after longer calculation we obtain
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By using the following denotation

N¼Nr

pa
; q¼ pa

Eh
; ρ¼ r=a; ð9Þ

and employing Eq. (2) we can rewrite Eq. (8) in a form
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where the right hand side can be further expressed as
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Eq. (10) is a generalization of classical solution given in [17]. By
substitution of Eq. (11) into Eq. (10) we obtain the generalized
differential equation for function N. The following boundary
conditions apply for a circular membrane of the diameter
Dmembr ¼ 2a clamped at the edge

wðrÞjr ¼ a ¼ 0; uðrÞjr ¼ a ¼ 0; ð12Þ

By setting the right hand side of Eq. (10) to zero one obtains the
classical solution given e.g. in [17]. By solving of the generalized
Eq. (10) we obtain the function N(ρ) and the deflection of the
membrane w(ρ) is then obtained by solving Eq. (2).

3. Numerical solution of the shape of the membrane lens
surface

Different approaches can be used in order to find the solution
of the nonlinear differential Eq. (10). There exist a lot of
numerical methods for solving differential equations [14–20].
A very good overview of these methods applied to the problem of
thin plates and membranes is given in [14,15,20] where also the
problem of the appropriate boundary conditions (clamping),
edge effects etc. is discussed. One of these is a series method
which is relatively simple and it gives good results. General
principle of this method is the following. The sought solution
f ðξÞ of given differential equation is expressed using expansion in
a series

f ðξÞ ¼ ∑
K

i ¼ 0
ci giðξÞ; ð13Þ

where functions giðξÞ are appropriately chosen to suit given
problem [14–20]. For the appropriate choice of these functions
it is good to know some other information resulting from the
nature of the solved problem e.g. that the function f ðξÞ is
symmetrical etc. As it is known every function can be approxi-
mated using polynomial expansion (Taylor series) i.e. one can use
simply the power series expansion as function giðξÞ. Sometimes it
is advantageous to use polynomials orthogonal on given area i.e.
for 2D rectangular area one can use e.g. 2D Legendre polynomials,
for circular area one can use Zernike polynomials. In case of some
symmetry of the problem one can further restrict the expansion
only to the symmetrical terms of expansion. In our case the
power series expansion with even powers only is assumed due to
the rotational symmetry (circular shape, constant pressure).
The unknown quantities that are to be determined are then the
coefficients ci. The determination of these coefficients can then
be performed numerically using optimization techniques. For
example in our case we know that the shape of the membrane
is symmetrical with respect to z-axis therefore we can express
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