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a b s t r a c t

We are presenting a differential three-dimensional (3-D) shape profiling method that is based on the
combination of orthogonal fringe projection. It allows us to compute depth gradient maps in a fast and
efficient manner. What we are demonstrating is that depth gradients can be computed in a simple way
by measuring fringe deformation throughout a novel single-shot approach. We show the usefulness and
potential applications of the proposed approach. Validation experiments are presented as well.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A variety of techniques for three-dimensional (3-D) shape
profiling have been proposed in the existing literature. In all the
cases, at least two elements are required in order to obtain
geometrical information of the scene by means of triangulation.
Some methods use two or more cameras (multi-view stereo), while
other methods use one camera and control illumination sources
(Structured light/Photometric stereo). Several multi-view stereo
methods can be found in the literature (see e.g. Ref. [1] and
references therein). Generally they employ multiple cameras
placed at various known positions. The different images of the
scene then allow corresponding points to be found and depending
on the relative positions of those points, depth information can be
obtained. The main advantage of those methods is that they do not
need flashing lights, and major drawbacks are the need of precise
calibration, the fact that textured images are required (to find
correspondences) and finally, computation complexity.

Photometric stereo is a simple and traditional 3D retrieval
technique first introduced by R. Woodham [2]. The main idea of
the method consists in finding the orientation field (normal
vectors) of a 3D surface by measuring light reflected when
illuminating from different angles. Photometric techniques are
sensitive to the presence of projected shadows and ambient
illumination. Also, Lambertian surfaces are usually needed.

The basic principle of structured light methods is to project one
or more light patterns and extract depth information by measuring

the deformation of projected patterns. Numerous techniques for
surface imaging by structured light are currently available (see Ref.
[3] and references therein for a complete and updated review).
These methods can be classified as single shot [4,5] or sequential
(multiple-shot). Usually sequential methods produce more reliable
and accurate results, but they cannot be used on moving scenes or
applications that impose constraint on the acquisition time.

We are presenting a new method for 3D retrieval that can be
identified as a single shot, structured light approach. In contrast
with most single shot techniques (e.g. Color Coded Stripes, Gray
Scale Coded Stripes, De Brujin Sequence, Pseudo Random Binary
Dots, Mini-Patterns and Color Coded Grids) [3], the proposed
method does not require finding correspondences or matching
steps. This is also true for the single shot technique proposed by
Takeda and Mutoh [6] where a dense reconstruction of the phase
is possible without any matching or calibration steps. However, in
contrast with Takeda's method, the proposed technique does not
require an unwrapping step.

In the following section, theory and method are described and
some advantages of the proposed technique are also listed. In
Section 3 we present experimental results, and in Section 4
conclusions are presented.

2. Description of the method

When a scene is being captured by two cameras and assuming
that just a translation exists between them, the apparent image
shift (disparity) gives information about relative depth of the
scene, as illustrated in Fig. 1. Assuming Hbmaxfh; f g, the disparity
Dðx; yÞ between both images (i.e., the shift of the images on the
detector arrays of the cameras) and the depth hðx; yÞ of the test
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surface relative to the reference plane will be related by

h� Y 0Y
B=H

; Y 0Y �D
H
f
: ð1Þ

the relative errors of the two approximations in Eq. (1) are ðf þhÞ=
ðH� f �hÞ and f =ðH� f Þ, respectively.

Hence,

h�D
H2

Bf
ð2Þ

where f is the focal length, H is the distance of the reference plane
and B is the distance between the cameras’ centers [7].

The previous expression was obtained by considering two
cameras, but it also holds when we have a camera and a projector,
as shown in the literature [6,3,8–10]. [For illustrative purpose in
Fig. 1 the relative translation between camera and projector is
along the y coordinate. In the next, the shift between camera and
projector will be along a direction at 45 degrees with respect to
the x and y coordinates.]

The procedure for 3D-shape retrieval we are proposing consists
in measuring the partial derivatives of the disparity (D), and then,
to integrate them with the purpose of retrieving hðx; yÞ using
Eq. (2).

Let us assume that we are projecting a rectangular fringe pattern
of period p in the x and y direction over a test surface, where Iðx; yÞ
is the pattern acquired by the camera (see Fig. 2(a)). The 2D-spatial
spectrum of this image is shown at the center of Fig. 2, in which
the red points correspond to the vicinity of the spatial carrier's
frequency (i.e. 2π/p). By performing a simple Fourier filtering (red
regions in Fig. 2), one can obtain a pattern ðIvðx; yÞÞ with deformed
vertical fringes and another one ðIhðx; yÞÞ with deformed horizontal
fringes, as shown in Fig. 2(b) and (c), respectively. [In Fig. 2 we are
assuming that the x and y direction are horizontal and vertical,
respectively.]

Therefore, it does not matter if the projected fringes are binary
or sinusoidal. Without loss of generality, by filtering the spatial
spectrum of Iðx; yÞ, one obtains

Ihðx; yÞ ¼ I0ðx; yÞ cos ðð2π=pÞðyþDðx; yÞÞÞ ð3Þ
and

Ivðx; yÞ ¼ I0ðx; yÞ cos ðð2π=pÞðxþDðx; yÞÞÞ ð4Þ
where I0ðx; yÞ is a function of the reflectance of the test surface.
As usual, we are assuming that I0ðx; yÞ and Dðx; yÞ are low-
frequency functions in comparison with the frequency of the

spatial carrier, i.e. Di51 and I0i52π=p, where the subscript
denotes partial derivative with respect to the variable ið ¼ x; yÞ.

Then, by taking partial derivatives with respect to the x and y
coordinates, from Eqs. (3) and (4) one obtains

Ihiðx; yÞ � �ð2π=pÞI0ðx; yÞ sin ½ð2π=pÞðyþDðx; yÞÞ�ðyiþDiðx; yÞÞ ð5Þ

Iviðx; yÞ � �ð2π=pÞI0ðx; yÞ sin ½ð2π=pÞðxþDðx; yÞÞ�ðxiþDiðx; yÞÞ ð6Þ
where xi¼1 and yi¼0 for i¼x, and xi¼0, yi¼1 for i¼y.

Hence, it is easy to demonstrate that

Dxðx; yÞ � Ihxðx; yÞ
Ihyðx; yÞ

ð7Þ

and

Dyðx; yÞ �
Ivyðx; yÞ
Ivxðx; yÞ

: ð8Þ

We conclude that the gradient of the disparity ðDÞ can be
calculated in a simple manner as the ratio of the derivatives of the
(horizontal and vertical) Fourier components of the image Iðx; yÞ
acquired by the camera.

After obtaining the partial derivatives ∂D=∂x and ∂D=∂y, we
must integrate them to obtain Dðx; yÞ (¼ hBf =H2). To avoid confu-
sions due to the notation, let us call the retrieved partial deriva-
tives ∂D=∂x¼ gx and ∂D=∂y¼ gy and the unknown function Dðx; yÞ ¼
uðx; yÞ. The problem of integration [11–13] is equivalent to the
problem of finding the function uðx; yÞ such that the error (or energy
function)

E½u� ¼ jj∂u=∂x�gxjj2þjj∂u=∂y�gyjj2

is minimized (jj � jj denotes the standard L-2 norm). The solution we
are looking for must satisfy the Euler–Lagrange equation,

∂2u
∂x2

þ∂2u
∂y2

¼ ∂ðgxÞ
∂x

þ∂ðgyÞ
∂y

: ð9Þ

The right side of Eq. (9) can be calculated from the already known gx
and gy functions. Defining ∂ðgxÞ=∂xþ∂ðgyÞ=∂y¼ G, the final step
consists in solving the Poisson equation,

∂2u
∂x2

þ∂2u
∂y2

¼ G: ð10Þ

The solution of Eq. (10) can be achieved in a closed form by using
sine or cosine expansions of u and G. For the sake of simplicity,
suppose that u and G are of size L� L. Without loss of generality,
we can assume that these functions extend outside the interval L� L.
Specifically, we will assume that they are periodic 2L (in both
directions) and odd in the variables x and y. Thus, we can write

Gðx; yÞ ¼ ∑
k ¼ L

k ¼ 1
∑

n ¼ L

n ¼ 1
dnk sin

πkx
L

� �
sin

πnx
L

� �
ð11Þ

uðx; yÞ ¼ ∑
k ¼ L

k ¼ 1
∑

n ¼ L

n ¼ 1
cnk sin

πkx
L

� �
sin

πnx
L

� �
: ð12Þ

It is easy to see that, in order to satisfy Eq. (10), cnk must be

cnk ¼ � L
π

� �2 dnk
n2þk2

: ð13Þ

Finally, by substituting Eq. (13) into Eq. (12) the depth map can be
obtained as desired.

3. Comparison with other methods

The procedure for 3D-shape retrieval described in the present
paper has various advantages with respect to other fringe projec-
tion methods presented in previous literature. Firstly, image
partial derivatives can be computed fast and efficiently. Secondly,

Fig. 1. Principle of stereoscopic vision. The figure shows two cameras C1,2 with
lenses of focal distance f separated a distance B, placed at a distance H from a
reference plane.
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