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A B S T R A C T

Predictability in the aviation system affects costs to airlines and passengers. We propose a predictability metric
based on a flight's gate-in fuel (GIF) which can be directly measured and monetized by aviation stakeholders. We
estimate GIF for six major U.S. airlines. Since GIF data are not directly available, we develop an estimation
methodology to obtain GIF from pushback weight and fuel burn, including a conversion from passenger to
weight payload based on an econometric model. The methodology accounts for aircraft operating empty weight
and payload. We find that GIF varies across airlines and time of year, and is highest during the summer period.
We monetize GIF through a cost-to-carry analysis as extra fuel loading results in additional fuel burn. Our
estimates reveal that, in 2012, airlines spent an additional $59 million to $667 million on carrying GIF, with a
total across all six airlines of $1.46 billion.

1. Introduction

Improving system performance has long been the focus of many air
navigation service providers (ANSP) worldwide. Developing key per-
formance indicators (KPIs) which measure the eleven globally endorsed
key performance areas (KPAs) by the International Civil Aviation
Organization (ICAO) enables ANSPs to identify areas for improvement
and take action to improve performance as well as communicate to
stakeholders how actions can affect the performance of the system
(CANSO, 2015). KPIs also help ANSPs measure the benefit of im-
plementing various initiatives and programs such as precise navigation
and others under the Next Generation Air Transportation System
(NextGen). Among the eleven globally endorsed key performance areas
(KPAs)1 (ICAO, 2009), the concept of predictability in air traffic man-
agement has recently received considerable attention from the Federal
Aviation Administration (FAA, 2012) and European Organisation for
the Saftey of Air Navigation (EUROCONTROL, 2015). Predictability,
defined by International Civil Aviation Organization (ICAO), is the
“ability of airspace users and ANSPs to provide consistent and de-
pendable levels of performance” (ICAO, 2009). The FAA believes pre-
dictability is the way to assess and monitor the operational health of the
U.S. aviation system (Hao and Hansen, 2014; Woodburn and Ryerson,
2014); leading them to explore new definitions of predictability as a

possible KPI or performance metric. A better understanding of how to
measure predictability and how to assess the potential benefit of en-
hanced predictability are of great interest to various stakeholders as
well as the academic community.

When the air traffic management system is not predictable, airlines
and passengers are affected. A lack of predictability affects airlines both
in the planning stages and the actual operations of flights. Airlines
produce a flight plan, which charts the route of flight and estimates the
amount of fuel that will be needed for the trip, roughly 2 hours before a
flight; this flight plan, through the choice of route and the quantity of
fuel loaded for contingencies (fuel loaded above what is required) re-
flects the airline's view of predictability. Airlines load extra fuel on
flights in order to mitigate risks such as unexpected airborne delays or
reroutes. Previous studies in this area confirm that the more uncertainty
that airlines face, the more extra fuel they load (Ryerson et al., 2014,
2015); moreover, this additional fuel loading comes at a significant
cost. Based on the estimation of one major U.S. airline data, the annual
fuel burn cost to carry extra fuel is in the order of $220 million (Ryerson
et al., 2015). Besides the fuel loading aspect of airlines flight planning,
predictability is also found to have significant direct impact on airline
scheduling (Sohoni et al., 2011; Hao and Hansen, 2014; Kang and
Hansen, 2017a), operating cost (Ball et al., 2010; Zou and Hansen,
2012) and passengers' level of service (ACRP, 2014), and indirect
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impact on the economy. From an ANSP's point of view, an informative
performance metric should not only be able to accurately reflect the
system performance, but also provide policy makers with a clear benefit
link such that the benefit of adopting/improving this metric can be
easily justified.

Towards defining and estimating predictability, we propose a novel
metric that is based on the predictability metric called flight gate-in fuel
(GIF), the amount of fuel left in the tank when a flight pulls into the
destination gate (to be discussed in details in Section 2.2). We combine
our previous work on monetizing the cost to carry excess fuel with
recent U.S. legislation that mandates all airlines provide flight level fuel
data to the FAA and make this publicly available.

The reminder of this paper is organized as follows: Section 2 es-
tablishes the link between predictability and fuel loading. Section 3 and
4 describes the data source and methodology used in developing GIF
prediction model. Section 5 presents an application of the GIF predic-
tion model to other airlines. The monetization of performance metrics is
demonstrated in Section 6. Conclusions and discussions with respect to
the new predictability metric are discussed in Section 7.

2. Overview of predictability literature

2.1. Defining predictability

Previous studies have considered predictability in the aviation
system but stopped short of directly developing, estimating, and mon-
etizing a metric. Table 1 summarizes various metrics used in existing
studies associated with predictability. Generally speaking, system pre-
dictability can be categorized into three groups: facility-oriented (e.g.
airport), human-related, and flight-oriented. Facility-oriented predict-
ability metrics can track performance changes of airfield facilities. One
example is an airport-specific capacity profile, also known as declared
called rates. Hourly or quarter-hourly fluctuation of capacity (flights
that can be handled at an airport over a unit of time) indicates the
predictability of an airport in terms of handling flights. Human-related
predictability usually refers to the consistency of flight controllers'
operating decisions. However, there is little research in developing
human-related predictability metrics. The main research body is cur-
rently centering on flight-oriented predictability which is also the focus
of this paper.

Flight predictability can also be viewed in strategic and tactical
dimensions (CANSO, 2015). Strategic predictability metrics reflect as-
pects of performance that flight operators can know months in advance

when they plan flight schedules. For instance, scheduled block time
adjustment (Kang and Hansen, 2017a) reflects airlines' strategic re-
sponses to system predictability. Tactical predictability metrics, in-
cluding actual block time variability, flight plan variability, on-time
performance, focus on day-of-operations. More details could be found
in Table 1.

However, most of the predictability metrics in Table 1 cannot be
directly monetized, which motivates us to propose a novel metric that is
monetizable. In the next section, we will discuss in detail the link be-
tween predictability and our proposed GIF metric and the GIF mon-
etization framework.

2.2. Impact of predictability on fuel consumption

The link between flight predictability and airline fuel loading and
consumption is a matter of physics and economics: loading extra fuel
results in additional fuel burn and burning fuel costs money. It is,
however, not simple that fuel loaded (or uplifted) is an indicator of
predictability.

Fuel is the second largest single operating cost item for many air-
lines, and the contribution of fuel consumption to global warming is
also of increased concern (BTS, 2015; Kang and Hansen, 2017b).
However, in order to better understand the context of this study, we
need to look at the general fuel planning process. Airlines rely on flight
dispatchers to perform the duty of flight planning including fuel plan-
ning and loading. US Federal Aviation Regulations (E-CFR, 2015)
(FARs) require a domestic commercial flight to uplift enough fuel to
complete the flight to the intended destination airport (mission fuel), as
well as fly from the destination airport to the alternate airport (if re-
quired based on the weather forecast at the scheduled time of arrival)
and hold in the air for 45 min at normal cruising speed (reserve fuel).
These quantities are automatically calculated by the airline's flight
planning system after the dispatcher chooses a route of flight among
several possible routes. Even if it is not required by the FARs, on top of
mission fuel and reserve fuel, airline dispatchers may uplift contingency
fuel to be on the aircraft to hedge against various uncertainties (e.g.
weather uncertainty, traffic congestion uncertainty, traffic control un-
certainty etc.) to ensure flight safety. Contingency fuel uplift is based on
a combination of corporate fuel policies and airline dispatchers' own
judgment. It reflects the airline dispatcher's assessment of the “down-
side” risks that may lead to additional fuel burn beyond what is pro-
jected by the flight plan. Fuel uplifted for alternate airports that are not
required can serve much the same purpose as contingency fuel if the

Table 1
Summary of predictability metrics.

Category Items Metrics Source

Facility-oriented Capacity variability Difference between 85th and the 15th percentile of airport
declared called rates

CANSO (2015); Performance Review Commission and FAA-ATO
(2014)

Flight-oriented Schedule reliability Departure delay Performance Review Commission and FAA-ATO (2014)
Arrival delay (on-time performance) CANSO (2015); Performance Review Commission and FAA-ATO

(2014); Millner et al. (2012)
Block time variability Difference between 85th and the 15th percentile of flight

time for each flight phase
CANSO (2015); Performance Review Commission and FAA-ATO
(2014)

Difference between scheduled and actual block time Woodburn and Ryerson (2014)
Flight time variability or effective flight time variability for
each flight phase

CANSO (2015),
ICAO (2013), Hao and Hansen (2014), Liu et al. (2014), Zou and
Hansen (2012), ACRP (2014)

Trajectory prediction accuracy Tobaruela et al. (2014)
Different percentiles of actual block time distribution Hao and Hansen (2014)
Change in scheduled block time Kang and Hansen (2017a)

Flight plan variability Travel time difference between last pre-departure flight plan
and last amended flight plan

CANSO (2015)

Trajectories difference between last pre-departure flight plan
and last amended flight plan

CANSO (2015)

Pre-departure sequence
variability

Correlation between the queue entry and the aircraft take-off
roll in pre-departure phase

Liu et al. (2014)

L. Kang et al. Journal of Air Transport Management 67 (2018) 146–152

147



Download	English	Version:

https://daneshyari.com/en/article/7435303

Download	Persian	Version:

https://daneshyari.com/article/7435303

Daneshyari.com

https://daneshyari.com/en/article/7435303
https://daneshyari.com/article/7435303
https://daneshyari.com/

