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Abbreviations:
DNL
Day-Night Average Level
LSA
Large Single-Aisle
LTA
Large Twin-Aisle
RJ
Regional Jet
rx,y
Correlation between variables x, y
rx,z
Correlation between variable x and
response z
ry,z
Correlation between variable y and
response z
Rx,y,z
Multiple correlation between variables x,y
and response z
SSA
Small Single-Aisle
STA
Small Twin-Aisle
VLA
Very Large Aircraft

Keywords:
Airport noise
Fleet noise
Fleet analysis
Technology impacts

a b s t r a c t

Demand projections for civil aviation have forecast increases in operations in future decades. Increases in
demand are beneficial to the growth and advancement of the aviation industry, but also come with the
threat of significant increase in environmental impacts. In response, the industry is focusing on programs
to develop technologies for reductions in fuel burn, NOx emissions, and noise. While aircraft-level im-
pacts are an obvious metric of success, it is difficult to make informed robust technology investment
decisions with respect to noise without understanding the fleet-level impacts. Fleet-level predictions of
noise for technology explorations are especially complicated because it is computationally expensive,
highly combinatorial, and airport-specific. Recently, rapid automated airport noise models have been
developed, which can be simulated using Design of Experiments (DOE). The results of these simulations
are used to generate surrogate models for airport noise contour area, which can be summed to yield a
fleet-level impact. These models make use of simplifying assumptions to provide estimates of airport-
level noise that are substantially cheaper to compute. They can be used to perform parametric trade-
off analyses in conjunction with the equivalency assumption. Equivalency asserts that environmental
impacts of a technology infused aircraft can be represented by scaled operations of the baseline aircraft
in the same class. This simple assumption allows for the modeling of technology and market penetration
factors under the same units: operations. This research uses surrogate models in conjunction with the
equivalency assumption to examine two potential technology scenarios in a target forecast year, simu-
lating technology and market performance factors to identify vehicle classes that could have the greatest
impact in reducing contour area. Results show that technology and market performance of future
notional Small Single Aisle and Large Single Aisle vehicle aircraft have the highest positive correlations
with potential reductions in contour area.
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1. Introduction

Several government and private entities, such as the Federal
Aviation Administration (FAA), Boeing, and Airbus, predict that
United States aviation demand is expected to increase significantly
in future decades (FAA, 2014b), (Boeing, 2013), (Airbus, 2015). To
upgrade the current National Airspace System (NAS) to handle
larger capacity, the NextGen initiative has been charged with
updating systems and practices to reflect state-of-the-art technol-
ogy, while preparing for future technological improvements (Office
of NextGen (2013)). NextGen goals include ensuring that increases
in aviation operations do not negatively impact the environment,
such as increases in fuel burn, NOx emissions, and community noise
exposure.

To address these issues, several technology programs have been
established, such as the FAA Continuous Lower Emissions, Energy,
and Noise (CLEEN) (FAA, 2014a), National Aeronautics and Space
Administration (NASA) Environmentally Responsible Aviation
(ERA) (Aeronautics Science and Technology Subcommittee, 2010),
and NASA Fixed Wing (FW) programs (Del Rosario, 2014). These
programs target various generations of future aircraft to bring
promising technologies to a level of maturity suitable for industry
adoption while reducing the financial risk to airframers through
cost-share agreements and development of higher Technology
Readiness Level (TRL) technologies (Springer, 2013). Program tar-
gets are set based on vehicle-level improvements relative to a
reference aircraft, and may vary between different aircraft types.
The NASA goals are summarized in Table 1 (Guynn et al., 2013).

While state-of-the-art physics-based aircraft-level technology
modeling has advanced substantially in recent decades, these an-
alyses do not provide a fleet-level perspective on technology im-
pacts. Without investigating the interaction between technology
infused aircraft, existing aircraft, and evolving operations, the true
environmental impact is difficult to quantify (Tetzloff and Crossley,
2014).

Airport community noise is especially challenging to evaluate in
this context because of its spatial and temporal characteristics that
fundamentally distinguish it from fuel burn and NOx emissions
(Heleno et al., 2014). Fuel burn and NOx emissions can be summed
directly to the fleet-level as they are single-point values for each
flight. Noise has a spatio-temporal component that requires
advanced mathematical techniques to analyze, first at the aircraft-
level, then considered at the individual airport-level, and finally
integrated to the fleet-level. As a result, detailed aircraft and airport
noise models are typically computationally expensive and require
unique detailed airport information that is not always practical for
technology evaluation scenarios at a fidelity-level appropriate for
screening.

As summarized in Fig. 1, source noise prediction is provided
through fundamental aeroacoustic models addressing specific

noise generating components. These noise sources are not con-
stant; they are a function of the aircraft performance through a
Landing and Takeoff (LTO) cycle. Aircraft performance provides the
aircraft and engine state, and its location in space. The source noise
is only part of the equation, as the propagation of this noise to a
host of observers ultimately defines the impact. To project noise to
the airport-level, a modeling framework is applied that enables
aircraft performance to be mapped through a set of coefficients.
This approach enables modeling of specific aircraft without pro-
prietary manufacturer data. Source noise levels are provided
through noise-power-distance (NPD) curves, typically generated
empirically from flyover measurements in the field. These curves
are used to interpolate noise propagation to the observer locations
around an airport. The flight profile is broken down into segments,
where the propagated noise to each observer location is computed.
These segments are then totaled together for each observer loca-
tion to provide noise for a single flight. Atmospheric, terrain, and
other absorption or reflection impacts are adjusted afterwards. This
process is repeated for every unique aircraft, runway heading, and
ground track (projection of the flight profile on Earth's surface).
These combinations require specific computation because the
three-dimensional aircraft location heavily impacts how noise
propagates to any given observer location. Once all flight contri-
butions to noise at each observer location are summed, these can be
used to locate contours of constant noise levels, which define re-
gions that are impacted by a certain minimum amount of noise. To
provide a fleet-level estimate, a system of airports must be defined
and the process must be repeated at each airport. This framework
leads to long setup and modeling times, particularly at the airport
and fleet-level, making it difficult to support rapid analysis of
technology options.

In response to these challenges a generic approach to fleet-level
environmental noise analysis has been proposed, rooted in the
assumption that aircraft and airports can be modeled by subset of
intelligently defined representative models. The aircraft-level noise
at a grid of observer locations can be pre-computed under straight
ground track and standard atmospheric assumptions, and then
scaled to the airport-level depending on the flight schedule and
runway layout. By pre-computing noise using detailed noise anal-
ysis tools, this time consuming task can be done off-line, allowing
the computation of airport-level noise to execute more quickly
(Bernardo et al., 2015a), (Bernardo, 2013). The inputs available are
the aircraft types, number of flights in day-time or nighttime,
approach and departure operation counts, the trip length, and the
runway layout. This approach is sufficiently fast and accurate to
provide screening-level studies, as well as automation of many
possible scenario analyses. The speed of execution allows for stra-
tegic sampling via Design of Experiments (DOE) with the intent of
developing surrogate models as a function of airport-specific fac-
tors such as total operations, fleet composition, trip-length

Table 1
NASA environmental goals increasing in stringency for future forecast years (Guynn et al., 2013).

Technology benefitsa Technology generations (technology readiness level ¼ 4e6)

Nþ1 (2015) Nþ2 (2020) Nþ3 (2025)

Noise (cum margin rel. to Stage 4) �32 dB �42 dB �52 dB
LTO NOx emissions (rel. to CAEP 6) �60% �75% �80%
Cruise NOx emissions (rel. to 2005 best in class) �55% �70% �80%
Aircraft fuel energy consumption (rel. to 2005 best in class) �33% �50% �60%

a Projected benefits once technologies are matured and implemented by industry. Benefits vary by vehicle size and mission. Nþ1 and Nþ3 values are referenced to a
737e800 with CFM56-7B engines, Nþ2 values are referenced to a 777e200 with GE90 engines (Guynn et al., 2013).
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