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a b s t r a c t

We present a model to describe the inbound air traffic over a congested hub and we show that this model
gives a very accurate description of the traffic by comparing our theoretical distribution of the queue
with the actual distribution observed at Heathrow airport. We also discuss the robustness of our model.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Airport congestion is a persistent phenomenon in air traffic. Air
traffic congestion is significant even if the principal airports inWest-
ern and Central Europe are treated as “fully coordinated”,1 meaning
essentially that the number of flights that can be scheduled per hour
(or other unit of time) is not allowed to exceed the “declared capacity”
of the airports (de Neufville and Odoni, 2003). In 2011, the average
ASMA additional time2 at the top 30 european airports amounted to
2.9 min per arrival, increasing by þ5% with respect to the previous
year. LondonHeathrow is a clearoutlier, havingby far thehighest level
of additional timewithin the last 40 nauticalmiles (NM)with 8.2min
per arrival, followed by Frankfurt andMadrid (EUROCONTROL, 2012).
Similar situations occur in the US (Ball et al., 2001).

Several approaches have been proposed to mitigate congestion
and resolve demand-capacity imbalances. At an operational level
(short-term) these approaches consider the operational adjust-
ment of air traffic flows to match available capacity. So far, the most
popular approach in resolving these short-term periods of
congestion has shown to be the allocation of ground delays (Odoni,

1987). The Ground Holding Problem considers the development of
strategies for allocating ground delays to aircraft, and it has
received considerable attention (Andreatta et al., 2011; Ball et al.,
2010; Dell’Olmo and Lulli, 2003; Richetta and Odoni, 1994). How-
ever, these air traffic flow management strategies might be sub-
optimal because they do not capture the inherent unpredictability
of arrivals at airports. Willemain et al. (2004) showed that changes
in the current practice for setting airport arrival rates can lead to
significant benefits in terms of additional ASMA times.

In view of the current situation, it is extremely important to
have a reliable tool to measure and forecast congestion in the air
traffic system. However, in developing such a tool there are some
issues to address. First of all, the stochastic models developed so far
to describe air traffic congestion are not reliable. Willemain et al.
(2004) showed that the estimated inter-arrival times at a distance
of 100NM from the final destination are nearly exponential. In other
words, the arrival stream can be considered Poissonian when
entering the control zone.3 The aircraft stream is successively
rearranged tomeet the air traffic control (ATC) rules and needs, so it
is natural to expect that Poissonian arrivals will give a poor fit with
the actual arrivals at a congested airport.4 Nevertheless, Poissonian
arrivals are very often considered as the actual arrival streamwhen
studying actual scenarios (Balakrishnan and Chandran, 2006;
Bäuerle et al., 2007; Dunlay, 1976; Marianov and Serra, 2003).

A second issue regards the validation of the stochastic models. It
is not easy to draw a comparison between observed and forecast
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1 In the U.S., scheduling limits are applied only to New York region airports,
Washington/Reagan, and Chicago/O’Hare airport, under the High Density Rule
(HDR).

2 The Arrival Metering and Sequencing Area (ASMA) is the airspace within a
radius of 40NM around an airport. The ASMA additional time is a proxy for the
average arrival runway queueing time of the inbound traffic flow, during times
when the airport is congested.

3 With respect to any London airport, the control zone is a large area covering
England and Wales, operated by the London Area Control Centre (LACC). See Sec-
tion 3 for more details.

4 Cf. Fig. 5a below.
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congestion, simply because it is hard to retrieve the number of
aircraft in the queue from a database of flights. Indeed, it is not clear
a priori which procedure should be used to extract information
about the airport congestion from a data set of waypoints passage
times. In particular, the problemweaddress is how to determine the
correct fraction of time each aircraft actually spends in the queue.

In this paper we propose a possible answer to both the afore-
mentioned problems. Regarding the former, in Section 2we present
a description of the arrival pattern and build a mathematical model
for the queue at the airport. The latter issue is addressed by
computing the time spent in queue by the aircraft as follows. Given a
terminal route and a database of flight records, the minimum time
lapse between the entrance in the control zone and the touch-down
is subtracted from the time flown by any other aircraft in the ter-
minal route. In this way the time spent in one or more stacks by the
aircraft is found. A detailed discussion of this approach is given in
Section 3. Eventually, the analysis is completed by comparing

� the stationary output of the mathematical queueing model
defined in Section 2;

� the distribution of the queue obtained from a data set of arrivals
at London Heathrow airport.

In particular, we will see in Section 4 that the fit of the actual
Heathrow datawith the output of the proposed model is very close,
and very much better with respect to the output of an equivalent
queueing model assuming Poissonian arrivals.

In fact, we will see in Section 2 that the proposed description of
the arrival pattern gives rise to a family of point processes. Each of
these are obtained from a deterministic schedule stream by
superimposing independent and identically distributed (i.i.d.)
random delays. The list of actual times of arrival is then the result of
the mixing-up of the fixed schedule by the random delays. The
process obtained in this way has a long history (Kendall, 1964). It is
easy to study numerically but quite difficult to treat from a math-
ematical point of view, though significant progress has been
recently made (Guadagni et al., 2012, 2011). In Section 5 we will
show by numerical simulations that the output of the model de-
pends only in a very weak manner on the kind of delays added to
each arrival time. In other words, the Probability Density Function
(PDF) of the random variables added to the deterministic arrival
stream has a very small impact on the distribution of the observed
queue. The only relevant parameter appears to be the variance of
the random delays. Therefore, any PDF is suitable and a reliable
forecast of the traffic over a congested hub one can also use very
simple random variables (e.g. uniform).

2. Description of arrival process and queueing model

Let 1/l be the expected inter-arrival time between two
consecutive aircraft. The Pre-Scheduled Random Arrivals (PSRA) is
an arrival process such that the actual time of arrival of the i-th
aircraft is

ti ¼
i
l
þ xi; i˛Z; (1)

where xi are real, continuous, i.i.d. random variables with compact
support. The delays xi have finite variance s2, their PDF is denoted
by f ðsÞ

x
ðtÞ. Without loss of generality we can assume EðxiÞ ¼ 0, as

EðxiÞs0 only affects the initial configuration of the system. The
expectation of the arrival time of the i-th customer is then EðtiÞ ¼ i.

When s is large the process defined in (1) weakly converges to
the Poisson process, in particular it is possible to prove that its
generating function tends point-wise to the generating function of

the Poisson process (Guadagni et al., 2011). This property also holds
for a variant of the PSRA process that takes into account the pos-
sibility of the flights’ cancellation, as in Ball et al. (2001). This
variant is an independent thinning version of this process, i.e., a
process in which each arrival has an independent probability 1�g

to be cancelled (and the complementary probability g to be a true
arrival). Fig. 1 shows the output of a thinned PSRA, the actual
stream of aircraft (ATA) is the consequence of the random delays xi
mixing-up the pre-scheduled, expected stream (ETA). In the Air
Traffic Management (ATM) context it is natural to couple a PSRA
arrival process with a deterministic service process with expected
service rate l. Since the inter-arrival rate of the thinned process is
gr, then the traffic intensity of the queueing model is clearly r ¼ g.

Remark 1. According to the model description above, the traffic
load r must be intended as a parameter of the model itself. In 2007
the airport of London Heathrow operated at an actual flow rate
between 97 and 98% of its runway capacity (SH&E Limited, 2008),
this sets 0.97 � r � 0.98 for our model. In Section 3 we will see an
operative definition of r based on actual data.

The queue of this model, nt, is then a well-defined, continuous-
timestochasticprocess. Associated to thisprocesswecanconsider the
embedded chain, i.e., the length of the queue at the service epochs.
The latter is a discrete-time Markov chain defined by the recursion

nkþ1 ¼ nk þmðk;kþ1� �
�
1� dnk ;0

�
; k˛N; (2)

where di, j is the usual Kronecker’s delta andm(k, k þ 1] is the number
of arrivals in the interval (k, k þ 1], that is, the number of those
aircraft {i1, i2,., iS} such that their actual arrival time is tis˛ðk; kþ 1�,
s ¼ 1,., S. The presence of the Kronecker’s delta ensures that the
queue at time k þ 1 is decreased by one unity only if the queue
length at time k is positive. After Kendall’s notation, such a
queueing model will be hereafter called PSRA/D, as in Gwiggner
(2011), Nikoleris and Hansen (2012).

Remark 2. PSRA/D is a mathematical model of a queueing system.
As such it may be far from modelling a real system with respect to
some specific features. For example, there are no explicit flight
separation rules as they are implicitly accounted for by the deter-
ministic service time with fixed duration 1/l. Nonetheless, such a
plain vanilla model is capable to deliver a very accurate goodness of
fit with actual data, as we will see in Section 4. Therefore it does
make sense to study it, and successively try and improve it to
includemore features of real ATM/Air Traffic Control (ATC) systems.

Although for large s both the PSRA process and its thinned
version are very similar to the Poisson process, they present a
crucial difference with the latter. Whenever s remains finite, the
PSRA process is negatively autocorrelated. The covariance Cov(n1,
n2) between the number of arrivals at two consecutive time periods
n1 and n2, where n1 is the number of arrivals in (t, tþ T] and n2 is the
number of arrivals in (t þ T, t þ 2T], is given by

Covðn1;n2Þ ¼ Eðn1n2Þ � Eðn1ÞEðn2Þ
¼ �

X
i

pðsÞi ðt; t þ TÞpðsÞi ðt þ T ; t þ 2TÞ;

ETA 

ATA 

Fig. 1. The actual stream of arrivals (ATA) rises from the action of random delays and
thinning (white dots) on a deterministic schedule (ETA).
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