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A B S T R A C T

In this paper, we explored how judgment can be used to improve the selection of a forecasting model. We
compared the performance of judgmental model selection against a standard algorithm based on information
criteria. We also examined the efficacy of a judgmental model-build approach, in which experts were asked to
decide on the existence of the structural components (trend and seasonality) of the time series instead of directly
selecting a model from a choice set. Our behavioral study used data from almost 700 participants, including
forecasting practitioners. The results from our experiment suggest that selecting models judgmentally results in
performance that is on par, if not better, to that of algorithmic selection. Further, judgmental model selection
helps to avoid the worst models more frequently compared to algorithmic selection. Finally, a simple combi-
nation of the statistical and judgmental selections and judgmental aggregation significantly outperform both
statistical and judgmental selections.

1. Introduction

Planning processes in operations - e.g., capacity, production, in-
ventory, and materials requirement plans - rely on a demand forecast.
The quality of these plans depends on the accuracy of this forecast. This
relationship is well documented (Gardner, 1990; Ritzman and King,
1993; Sanders and Graman, 2009; Oliva and Watson, 2009). Small
improvements in forecast accuracy can lead to large reductions in in-
ventory and increases in service levels. There is thus a long history of
research in operations management that examines forecasting processes
(Seifert et al., 2015; Nenova and May 2016; van der Laan et al., 2016,
are recent examples).

Forecasting model selection has attracted considerable academic
and practitioner attention during the last 30 years. There are many
models to choose from – different forms of exponential smoothing,
autoregressive integrated moving average (ARIMA) models, neural
nets, etc. – and forecasters in practice have to select which one to use.
Many academic studies have examined different statistical selection
methodologies to identify the best model; the holy grail in forecasting
research (Petropoulos et al., 2014). If the most appropriate model for
each time series can be determined, forecasting accuracy can be sig-
nificantly improved (Fildes, 2001), typically by as much as 25–30%
(Fildes and Petropoulos, 2015).

In general, forecasting software recommends or selects a model

based on a statistical algorithm. The performance of candidate models
is evaluated either on in-sample data, usually using appropriate in-
formation criteria (Burnham and Anderson, 2002), or by withholding a
set of data points to create a validation sample (out-of-sample evalua-
tion, Ord et al., 2017, also known as cross-validated error). However, it
is easy to devise examples in which statistical model selection (based
either on in-sample or out-of-sample evaluation) fails. Such cases are
common in real forecasting applications and thus make forecasting
model selection a non-trivial task in practice.

Practitioners can apply judgment to different tasks within the
forecasting process, namely:

1. definition of a set of candidate models,
2. selection of a model,
3. parametrization of models,
4. production of forecasts, and
5. forecast revisions/adjustments.

Most of the attention in the judgmental forecasting literature fo-
cuses on the latter two tasks. Experts are either asked to directly esti-
mate the point forecasts of future values of an event or a time series (see
for example Hogarth and Makridakis, 1981; Petropoulos et al., 2017),
or they are asked to adjust (or correct) the estimates provided by a
statistical method in order to take additional information into account;
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such information is often called soft data, such as information from the
sales team (Fildes et al., 2009).

However, little research has examined the role and importance of
human judgment in the other three tasks. In particular, Bunn and
Wright (1991) referred to the problem of judgmental model selection
(item 2 in the above list), suggesting that the selection of the most
appropriate model(s) can be based on human judgment. They also
emphasized the dearth of research in this area. Importantly, the ma-
jority of the world-leading forecasting support systems allow human
judgment as the final arbiter among a set of possible models.1 There-
fore, the lack of research into how well humans perform this task re-
mains a substantive gap in the literature.

In this study, we examined how well human judgment performs in
model selection compared with an algorithm using a large-scale beha-
vioral experiment. We analyzed the efficiency of judgmental model
selection of individuals as well as groups of participants. The frequency
of selecting the best and worst models provides suggestions on the ef-
ficacy of each approach. Moreover, we identified the process that most
likely will choose models that lead to improved forecasting perfor-
mance.

The rest of our paper is organized as follows. The next section
provides an overview of the literature concerning model selection for
forecasting. The design of the experiment to support the data collection
is presented in section 3. Section 4 shows the results of our study.
Section 5 discusses the implications for theory, practice, and im-
plementation. Finally, section 6 contains our conclusions.

2. Literature

2.1. Commonly used forecasting models

Business forecasting is commonly based on simple, univariate
models. One of the most widely used families of models are exponential
smoothing models. Thirty different models fall into this family
(Hyndman et al., 2008). Exponential smoothing models are usually
abbreviated as ETS, which stands for either ExponenTial Smoothing or
Error, Trend, Seasonality (the three terms in such models). More spe-
cifically, the error term may be either additive (A) or multiplicative
(M), whereas trend and seasonality may be none (N), additive (A), or
multiplicative (M). Also, the trend can be linear or damped (d). As an
example, ETS(M,Ad,A) refers to an exponential smoothing model with a
multiplicative error term, a damped additive trend, and additive sea-
sonality. Maximum likelihood estimation is used to find model para-
meters that produce optimal one-step-ahead in-sample predictions
(Hyndman and Khandakar, 2008).

These models are widely used in practice. In a survey of forecasting
practices, the exponential smoothing family of models is the most fre-
quently used (Weller and Crone, 2012). In fact, it is used in almost 1/3
of times (32.1%), with averages coming second (28.1%) and naive
methods third (15.4%). More advanced forecasting techniques are only
used in 10% of cases. In general, simpler methods are used 3/4 times, a
result that is consistent with the relative accuracy of such methods in
forecasting competitions. Furthermore, an empirical study that eval-
uated forecasting practices and judgmental adjustments reveals that
“the most common approach to forecasting demand in support of
supply chain planning involves the use of a statistical software system
which incorporates a simple univariate forecasting method, such as
exponential smoothing, to produce an initial forecast” (Fildes et al.,
2009, p. 4), while it specifies that three out of four companies examined
“use systems that are based on variants of exponential smoothing”
(Fildes et al., 2009, p. 7).

There are many alternatives to exponential smoothing for producing
business forecasts, such as neural networks and other machine learning
methods. Nevertheless, time series extrapolative methods remain very
attractive. This is due to their proven track record in practice (Gardner,
2006) as well as their relative performance compared to more complex
methods (Makridakis and Hibon, 2000; Armstrong, 2006; Crone et al.,
2011). Furthermore, time series methods are fairly intuitive, which
makes them easy to specify and use, and enhances their acceptance by
the end-users (Dietvorst et al., 2015; Alvarado-Valencia et al., 2017).
Complex methods, such as many machine learning algorithms, often
appear as black boxes, and provide limited or no insights into how the
forecasts are produced and which data elements are important. These
attributes of forecasting are often critical for users (Sagaert et al.,
2018).

2.2. Algorithmic model selection

Automatic algorithms for model selection are often built on in-
formation criteria (Burnham and Anderson, 2002; Hyndman et al.,
2002). Models within a certain family (such as exponential smoothing
or ARIMA) are fitted to the data, and the model with the minimum
value for a specific information criterion is selected as the best. Various
information criteria have been considered, such as Akaike's Information
Criterion (AIC) or the Bayesian Information Criterion (BIC). The AIC
after correction for small sample sizes (AICc) is often recommended as
the default option because it is an appropriate criterion for short time
series and it differs only minimally from the conventional AIC for
longer time series (Burnham and Anderson, 2002). However, research
also suggests that if we focus solely on out-of-sample forecasting ac-
curacy, the various information criteria may choose different models
that nonetheless result in almost the same forecast accuracy (Billah
et al., 2006).

Information criteria are based on the optimized likelihood function
penalized by model complexity. Using a model with optimal likelihood
inadvertently assumes that the postulated model is true (Xia and Tong,
2011). In a forecasting context, this assumption manifests itself as fol-
lows: The likelihood approach generally optimizes the one-step-ahead
errors; for the forecasts to be optimal for multi-step ahead forecasts, the
resulting model parameters should be optimal for any longer horizon
error distribution as well. This will only occur if the model is true, in
which case the model fully describes the structure of the series.
Otherwise, the error distributions will vary with the time horizon
(Chatfield, 2000). Such time-horizon dependent error distributions are
often observed in reality (Barrow and Kourentzes, 2016), providing
evidence that any model merely approximates the underlying unknown
true process. Not recognizing this can lead to a biased model selection
which favors one-step-ahead performance at the expense of longer time
horizons that may well be the analyst's real objective.

An alternative to selecting models via information criteria is to
measure the performance of different models in a validation set (Fildes
and Petropoulos, 2015; Ord et al., 2017). The available data are divided
into fitting and validation sets. Models are fitted using the first set, and
their performance is evaluated in the second set. The model with the
best performance in the validation set is put forward to produce fore-
casts for the future. The decision maker can choose the appropriate
accuracy measure. The preferred measure can directly match the actual
cost function that is used to evaluate the final forecasts.

Forecasts for validation purposes may be produced only once (also
known as fixed-origin validation) or multiple times (rolling-origin),
which is the cross-validation equivalent for time series data. Evaluating
forecasts over multiple origins has several advantages, most im-
portantly their robustness against the peculiarities in data that may
appear within a single validation window (Tashman, 2000). Model
selection on (cross-)validation has two advantages over selection based
on information criteria. First, the performance of multiple-step-ahead
forecasts can be used to inform selection. Second, the validation

1 For example, see the ‘Manual Model Selection’ feature of SAP Advanced Planning and
Optimization (SAP APO), on SAP ERP: https://help.sap.com/viewer/
c95f1f0dcd9549628efa8d7d653da63e/7.0.4/en-US/
822bc95360267614e10000000a174cb4.html.
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