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A rapid method to differentiate between E coli and Salmonella Typhimurium was developed. E. coli and
S. Typhimurium were separately grown in super broth and incubated at 37 °C. Super broth without inoc-
ulation of E. coli or S. Typhimurium was used as control. Numbers of E. coli and S. Typhimurium were
followed using a colony counting method. Identification of the volatile metabolites produced by E. coli
and S. Typhimurium was determined using solid-phase microextraction coupled with gas chromatogra-
phy/mass spectrometry. An electronic nose with 12 non-specific metal oxide sensors was used to monitor
the volatile profiles produced by E. coli and S. Typhimurium. Principal component analysis (PCA) and
Back-propagation neural network back-propagation neural network (BPNN) were used as pattern recognition tools. PCA was used for data
Principal component analysis exploration and dimensional reduction. PCA could visualize class separation between sample subgroups.
E. coli The BPNN was shown to be capable of predicting the number of E. coli and S. Typhimurium. Good pre-
Salmonella Typhimurium diction was possible as measured by a regression coefficient (R? =0.96) between true and predicted data.
Using metal oxide sensors and pattern recognition techniques, it was possible to discriminate between
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samples containing E. coli from those containing S. Typhimurium.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Detection and differentiation of foodborne pathogens is a major
concern of the food industry. The public health implications of fail-
ing to detect certain pathogens can cause disease or even death
[1,2]. Classical methods for the detection and differentiation of
microorganisms have been based on traditional plate count meth-
ods. These methods are both tedious and time consuming because
they usually require a series of tests with the incubation of the
microorganisms. The limitations of these methods have led to the
research focusing on development of rapid and accurate techniques
to identify pathogens in food products [3]. Microorganisms can be
characterized by identification of specific metabolites generated
by specific biochemical pathways [4,5]. However, many metabo-
lites may be common to several microorganism species. Therefore,
the differences between samples often relate to a complex balance
between patterns of volatiles rather than to a major change in one
or two constituents [6,7].

Electronic nose technology has been shown to provide rapid,
continuous monitoring of a wide array of different volatile chem-
icals [8]. A considerable number of electronic nose applications
have been reported, including evaluation of the off-odor in wine
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[9], detection of Salmonella Typhimurium in fat free milk [10],
classification of milk [11], and detection of foodborne pathogens
in vegetables [12]. The electronic noses can be used for the spe-
cific analysis, identification, and recognition of complex odors and
volatile organic compounds [9]. However, the electronic noses gen-
erated multi-dimensional data that was difficult to handle and
visualize. This underlines the importance of using multivariate
data analysis to extract the specific information necessary to tar-
get a specific microorganism. Pattern recognition interpretation
techniques, such as principal component analysis (PCA), linear
discriminant analysis (LDA) and artificial neural network (ANN),
provide complementary information which was simply unachiev-
able by conventional data analysis [13,14].

PCA is an unsupervised technique commonly used in signal
processing and pattern recognition [15,16]. PCA is used to reduce
the dimensionality of multivariate data while preserving most of
the variance, and thus is an excellent technique for observing the
natural relationships between samples [17-19]. Artificial neural
network has been proved to be powerful tools for data processing
[11,20]. The advantages of the artificial neural network approach
to the multivariate calibration of sensor arrays are well known.
The most common neural network approach to regression-type
problems is multilayer perceptrons with back-propagation neural
network (BPNN). The objective is to identify a model that will
correctly associate inputs with outputs. The learning data is used
to train the system and to develop the calibration model. The
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test data are then evaluated by the calibration model in order to
obtain the predicted results. This technique has the advantage of
producing low prediction errors [20,21].

The objective of this work was to develop a method to iden-
tify and differentiate between E. coli and S. Typhimurium using 12
non-specific metal oxide sensors integrated with PCA and BPNN. In
this approach, identification and differentiation was based on the
determination of the volatile metabolites that signify a particular
microorganism. E. coli and S. Typhimurium were used as the tar-
get microorganisms in this study because outbreaks of foodborne
illness caused by S. Typhimurium have been repeatedly reported
[1,22,23], and the presence of E. coli in foods indicates fecal con-
tamination and the presence of pathogenic microorganisms.

2. Methodology
2.1. Preparation of stock culture and test solution

The nonpathogenic strain E. coli ATCC 25922 obtained from
the American Type Culture Collection (ATCC, Rockville, MD) was
inoculated into Luria Bertani broth consisting of 10 g Bacto tryp-
tone (Becton, Dickinson and Company, Sparks, MD), 5 g Bacto yeast
(Becton, Dickinson and Company, Sparks, MD), and 5 g NaCl, and
incubated at 37°C in a gyratory shaker (G-25 New Brunswick Sci-
entific Corporation, New Brunswick, NJ) at 100rpm. The E. coli
suspension was then dispensed into sterile 125 ml polypropylene
centrifuge bottles, and centrifuged (Rotor-GSA model RC 5 C Super-
speed Centrifuge, Sorvall Instruments, Dupont Co., Hoffman Estate,
IL) at 1600 x g for 10 min. The supernatant was decanted, and the
resulting cell pellets were resuspended in a sterile 15% glycerol
solution. One ml aliquots of bacterial suspension were transferred
into 1.5 ml microcentrifugal tubes and frozen using liquid nitrogen.
The frozen cultures were stored at —80°C.

Super broth consisting of 32 g tryptone, 20 g yeast, 5 g NaCl, and
5 ml of 1N NaOH per liter was used as a basal medium. Before being
utilized, E. coli was transferred from the stock culture to super broth
and incubated overnight at 37 °C. E. coli (100 CFU/ml) was inocu-
lated into super broth, and 5 ml of super broth were transferred into
standard 20 ml headspace vials and sealed with PTFE-lined Teflon
caps (Alpha M.O.S., Hillsborough, NJ). The cultures were allowed to
grow in vials at 37°C in a gyratory shaker (G-25 New Brunswick
Scientific Corporation, New Brunswick, NJ) at 100 rpm. Test solu-
tion of S. Typhimurium was prepared in the same manner. Samples
were periodically analyzed after incubation at 37 °C for 4, 6, 8 and
10 h using colony counting, solid-phase microextraction coupled
with gas chromatography/mass spectrometry (SPME-GC-MS) and
an electronic nose.

2.2. Colony counting method

Samples were serially diluted in sterile Butterfield’s phosphate
buffer. A series of dilutions was prepared from the stock suspen-
sion. Serially diluted samples were plated in duplicate using 3M
Petrifilm aerobic count plates (3 M Industrial Markets, St. Paul, MN)
to determine total bacteria. All plates were incubated at 35°C for
48 + 2 h. Plate counts were recorded as CFU/ml.

2.3. Identification of volatile compounds using SPME-GC-MS

Volatile compounds from headspace samples were collected
using a polydimethylsiloxane solid-phase microextraction fiber
(Supelco, Inc., Bellefonte, PA). For headspace sampling, 5 ml of a lig-
uid sample were placed into a 20 ml vial and the fiber was exposed
to the head space of the media solution. Sampling temperature was
maintained at 37 °C, and the sampling duration was 10 min, which

Table 1
Sensor types and volatile descriptors

Sensors Volatile description

P101, P102, SYGCT
PA2, SYAA, T301

Non-polar volatiles: methane, propane
Organic solvents: polar compounds, ethanol

T702 Alcohol and aromatic compounds

SYG, SYGH Amines and amine containing compounds and ammonia
derivatives

SYGCTI Ammonia and sulfur

P401, SYLG Fluoride and chloride: fluorinated and chlorinated

compounds, aldehydes

was sufficient to permit the establishment of a near equilibrium for
the compounds tested. A GC (HP-6890, Hewlett-Packard Co., Wilm-
ington, DE) was used for the analysis of the compounds. Volatiles
were separated using a capillary column (SPB5, 30 m x 0.1 mm i.d.,
0.25 pm coating thickness). The carrier gas used was ultrapurified
helium (99.99% purity) at a flow rate of 0.5 ml/min. The tempera-
ture program was isothermal for 2 min at 40 °C and raised to 240°C
at a rate of 50°C/min. Electron impact ionization (FCD-650, LECO
Corp., StJoseph, MI) was used by the time-of-flight (TOF) mass spec-
trometer in evaluation of the volatiles. Mass spectra were collected
at a rate of 40 spectra/s over a range of 30-400 m/z. The ioniza-
tion energy was 70eV. Identification of volatile components was
determined by comparison of collected mass spectra with those of
authenticated standards and spectra in the National Institute for
Standards and Technology (NIST) mass spectral library.

2.4. Volatile analysis using metal oxide sensors

An electronic nose (Fox 3000, Alpha M.O.S., Hillsborough, NJ)
with 12 metal oxide sensors (SYLG, SYG, SYAA, SYGH, SYGCTI, SYGCT,
T301, P101, P102, P401, T702, and PA2) was used for monitoring
changes in volatiles produced by E. coli in a super broth medium.
The descriptors associated with the sensors are shown in Table 1.
The volatile analysis system combines a measurement chamber for
generating the volatile compounds and a detection system made up
of 12 metal oxide sensors. This instrument was linked to an auto-
sampler capable of analyzing a total of 64 samples. Samples were
placed in glass vials and sealed with crimped PTFE/metal septa.

Samples were placed in the HS100 auto-sampler in arbitrary
order. Prior to analysis, the vial was removed from the sample tray
and placed in a temperature-controlled chamber. The vial temper-
ature was held at 37°C while being spun in order to produce an
equilibrated headspace. The time the vial remains in this chamber is
the headspace generation time. The automatic injection unit heats
the samples to 37 °C using an incubation time of 300 s. The temper-
ature of the injection syringe was 42 °C. The injector needle then
removes 2.5 ml of headspace and injects it into the sensor chamber.
The delay time between two injections was 300s. Each injection
was repeated, with separate samples (three times for all variations
per day) for seven days. The electronic signals from the sensors
were digitized and then transferred to the control computer.

Each sensor element changes in resistance (Rmax ) when exposed
to volatile compounds. In order to produce consistent data for the
classification, the sensor response was presented with a volatile
chemical relative to the base resistance in air, which is the maxi-
mum change in the sensor electrical resistance divided by the initial
resistance, as follows
Relative resistance change =

(1)

ARmaX
Ro

where ARmax =Rmax — Ro is the maximum change in the sensor
electrical resistance and Ry the initial baseline resistance of the
sensor. The baseline of the sensors was acquired in a synthetic air
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