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a b s t r a c t

Robust optimization is a young and active research field that has been mainly developed in the last 15
years. Robust optimization is very useful for practice, since it is tailored to the information at hand, and it
leads to computationally tractable formulations. It is therefore remarkable that real-life applications of
robust optimization are still lagging behind; there is much more potential for real-life applications than
has been exploited hitherto. The aim of this paper is to help practitioners to understand robust
optimization and to successfully apply it in practice. We provide a brief introduction to robust
optimization, and also describe important do's and don'ts for using it in practice. We use many small
examples to illustrate our discussions.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Real-life optimization problems often contain uncertain data. Data
can be inherently stochastic/random or it can be uncertain due to
errors. The reasons for data errors could be measurement/estimation
errors that come from the lack of knowledge of the parameters of the
mathematical model (e.g., the uncertain demand in an inventory
model) or could be implementation errors that come from the
physical impossibility to exactly implement a computed solution in
a real-life setting. There are two approaches to deal with data
uncertainty in optimization, namely robust and stochastic optimiza-
tion. Stochastic optimization (SO) has an important assumption, i.e.,
the true probability distribution of uncertain data has to be known or
estimated. If this condition is met and the reformulation of the
uncertain optimization problem is computationally tractable, then SO
is the methodology to solve the uncertain optimization problem at
hand. For details on SO, we refer to Prékopa [44], Birge and Louveaux
[22] and Ruszczyński and Shapiro [48], but the list of references can
be easily extended.

Robust optimization (RO), on the other hand, does not assume that
probability distributions are known, but instead it assumes that the
uncertain data resides in the so-called uncertainty set. Additionally,
basic versions of RO assume “hard” constraints, i.e., constraint
violation cannot be allowed for any realization of the data in the
uncertainty set. RO is popular because of its computational tract-
ability for many classes of uncertainty sets and problem types. For a

detailed overview of the RO framework, we refer to Ben-Tal et al. [9],
Ben-Tal and Nemirovski [6] and Bertsimas et al. [17].

Although the first published study [49] dates back to 1970s, RO
is a relatively young and active research field, and has been mainly
developed in the last 15 years. There have been many publications
that show the value of RO in many fields of application including
finance [41], energy [19,1], supply chain [8,40], healthcare [30],
engineering [5], scheduling [54], marketing [53], etc. Indeed, the
RO concepts and techniques are very useful for practice, since they
are tailored to the information at hand and leads to tractable
formulations. It is therefore remarkable that real-life applications
are still lagging behind; there is much more potential for real-life
applications than has been exploited hitherto.

In this paper we give a concise description of the basics of RO,
including the so-called adjustable RO for multi-stage optimization
problems. Moreover, we extensively discuss several items that are
important when applying RO, and that are often not well under-
stood or incorrectly applied by practitioners. Several important
do's and don'ts are discussed, which may help the practitioner to
successfully apply RO. We use many small examples to illustrate
our discussions.

The remainder of the paper is organized as follows. Section 2
gives a concise introduction to RO. Sections 3–10 discuss several
important practical issues in more detail. An important ingredient
of RO is the so-called uncertainty set, which is the set of values for
the uncertain parameters that are taken into account in the robust
problem. This set has to be specified by the user, and Section 3
presents several ways to construct uncertainty sets. Section 4
discusses an important technical aspect in adjustable RO. In
practice, multi-stage problems may contain adjustable variables
that are integer. Section 5 proposes a RO method that deals with
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such integer variables. Section 6 warns that the robust versions of
equivalent deterministic problems are not necessarily equivalent,
and gives the correct robust counterparts. Section 7 discusses that
equality constraints containing uncertain parameters needs a
special treatment. In RO one optimizes for the worst case scenario,
i.e., for the worst case values of the uncertain parameters.
Although this statement is true, the way it is formulated is often
misunderstood. In Section 8, we therefore clarify how it should be
formulated. It is important to test how robust the final solution is,
and to compare it to, e.g., the nominal solution. Section 9 discusses
how to assess the robustness performance of a given solution via a
simulation study. Section 10 shows that RO applied in a folding
horizon setting may yield better solutions than adjustable RO for
multi-stage problems. Section 11 summarizes our conclusions, and
indicates future research topics.

2. Introduction to robust optimization

In this section we first give a brief introduction to RO, and then
we give a procedure for applying RO in practice. The scopes of the
following sections are also presented in this section.

2.1. Robust optimization paradigm

For the sake of exposition, we use an uncertain linear optimi-
zation problem, but we point out that most of our discussions in
this paper can be generalized for other classes of uncertain
optimization problems. The “general” formulation of the uncertain
linear optimization problem is as follows:

min
x

fc>x : Axrdgðc;A;dÞAU ; ð1Þ

where cARn, AARm�n and dARm denote the uncertain coeffi-
cients, and U denotes the user specified uncertainty set. The
“basic” RO paradigm is based on the following three assumptions
[9, p. xii]:

A.1. All decision variables xARn represent “here and now” deci-
sions: they should get specific numerical values as a result of
solving the problem before the actual data “reveals itself”.

A.2. The decision maker is fully responsible for consequences of
the decisions to be made when, and only when, the actual
data is within the prespecified uncertainty set U .

A.3. The constraints of the uncertain problem in question are
“hard”, i.e., the decision maker cannot tolerate violations of
constraints when the data is in the prespecified uncertainty
set U .

In addition to the “basic” assumptions, we may assume without
loss of generality that (1) the objective is certain; (2) the constraint
right-hand side is certain; (3) U is compact and convex; and (4) the
uncertainty is constraint-wise. Below, we explain the technical
reasons of why these four assumptions are not restrictive.

E.1. Suppose the objective coefficients (c) are uncertain and (say)
these coefficients reside in the uncertainty set C:
min

x
max
cAC

fc>x : Axrd 8AAUg:

Without loss of generality we may assume that the uncertain
objective of the optimization problem can be equivalently
reformulated as certain [9, p. 10]:

min
x; t

ft : c>x�tr0 8cAC; Axrd 8AAUg;

using a reformulation and the additional variable tAR.

E.2. The second assumption is not restrictive because the uncer-
tain right-hand side of a constraint can always be translated
to an uncertain coefficient by introducing an extra variable
xnþ1 ¼ �1.

E.3. The uncertainty set U can be replaced by its convex hull conv
(U), i.e., the smallest convex set that includes U , because
testing the feasibility of a solution with respect to U is
equivalent to taking the supremum of the left hand side of
a constraint over U , which yields the same optimal objective
value if the maximization is conv(U). For details of the formal
proof and the compactness assumption, see [9, pp. 12–13].

E.4. To illustrate that robustness with respect to U can always be
formulated constraint-wise, consider a problem with two
constraints and with uncertain parameters d1 and d2:
x1þd1r0, x2þd2r0. Let U ¼ fdAR2 : d1Z0; d2Z0; d1þ
d2r1g be the uncertainty set. Then, U i ¼ ½0;1� is the projec-
tion of U on di. It is easy to see that robustness of the i-th
constraint with respect to U is equivalent to robustness with
respect to U i, i.e., the uncertainty in the problem data can be
modelled constraint-wise. For the general proof, see [9, pp. 11–
12].

For uncertain nonlinear optimization problems, the assump-
tions are also without loss of generality, except the third basic
assumption [E.3].

If we assume that cARn and dARm are certain, then the robust
reformulation of (1) that is generally referred to as the robust
counterpart (RC) problem is given as follows:

min
x

fc>x : AðζÞxrd 8ζAZg; ð2Þ

where Z �RL denotes the user specified primitive uncertainty set.
A solution xARn is called robust feasible if it satisfies the uncertain
constraints [AðζÞxrd] for all realizations of ζAZ.

As it is mentioned above, and explained in [E.4], we may focus
on a single constraint, since the uncertainty is constraint-wise in
RO. A single constraint taken out of (2) can be modeled as follows:

ðaþPζÞ>xrd 8ζAZ: ð3Þ

In the left-hand side of (3), we use a factor model to formulate a
single constraint of (2) as an affine function aþPζ of the primitive
uncertain parameter ζAZ, where aARn and PARn�L. One of the
most famous example of such a factor model is the 3-factor model
of Fama and French [29], which models different type of assets as
linear functions of a limited number of uncertain economic factors.
To point out, the dimension of the general uncertain parameter Pζ
is often much higher than that of the primitive uncertain para-
meter ζ (i.e., ncL).

2.2. Solving the robust counterpart

Notice that (3) contains infinitely many constraints due to the
for all (8 ) quantifier imposed by the worst case formulation, i.e., it
seems intractable in its current form. There are two ways to deal
with this. The first way is to apply robust reformulation techniques
to exclude the for all (8 ) quantifier. If deriving such a robust
reformulation is not possible, then the second way is to apply the
adversarial approach. In this section, we describe the details of
these two approaches.

We start with the first approach, which consists of three steps.
The result will be a computationally tractable RC of (3), which
contains a finite number of constraints. Note that this reformula-
tion technique is one of the main techniques in RO [17].
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