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a b s t r a c t

A method is proposed to solve one of the problems that profilometry encounters when fringe projection
techniques are used: the difficulty to discern between surface discontinuities that cause phase shifts
greater than 2π. Based on fringe projection of a single composite fringe pattern containing three different
frequencies, such problem can be solved. Experimental results are presented using Fourier methods.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

There is a diversity of techniques to get the shape of objects that
have surface discontinuities or spatially isolated surfaces through
the projection of light; perhaps the simplest is the projection of a
single line, with the disadvantage of needing a scanning process [1].
In general, most methods, such as temporal phase unwrapping [2] or
multi-frequency fringe projection [3], require the manipulation of
various images; a detailed description of them can be found on the
review articles of Refs. [4] and [5]. In order to reduce the erroneous
measurements caused by object movements during the image
grabbing process, or to decrease the acquisition time, it is desirable
to get the 3D shape information from a single image. Takeda et al. [6]
have proposed a method based on a two-frequency fringe pattern
and modifications to the Gushov–Solodkin algorithm. Later, other
single-shot methods have been proposed, as the two-frequency
fringe pattern of [7], which requires an unwrapping process for both
the high and low frequency phases. Also, a single color pattern has
been proposed [8], but it requires an additional calibration process to
avoid color crosstalk; moreover, the color absorption of some
materials restricts its use. Additional references that utilize one
image to get the surface profile can be found in the reviewed article
of Ref. [9].

Our proposal deals with the projection of a single image (gray
levels) to get the shape of objects having discontinuities or being
spatially isolated. It is based on the projection of a composite
fringe pattern with three frequencies and the calculation of a
fringe pattern with an equivalent period of one. The phase of this

equivalent pattern gives us the phase without using an unwrap-
ping process. By scaling this phase, we can get the fringe orders of
the high frequency components irrespective of phase discontinu-
ities. These fringe orders help us to unwrap the phase and to
determine its ambiguities caused by phase jumps greater than 2π.
This method resembles the one proposed in Ref. [10], with the
difference that they project the single period and the high
frequency patterns independently; also, to get its phase values,
they use phase shifting techniques, which requires at least three
images of each one.

2. Theory

Let us explain our proposal. Using a computer, we generate a
composite pattern to be projected onto the object surface given by

iDðx; yÞ ¼ ðG=6Þf3þ cos ð2πf xÞþ cos ð2πf yÞ
þ cos ½2πðf þ1Þxþ2πf y�g; ð1Þ

where f is a carrier frequency, G is a constant that represents the
amplitude value introduced to obtain the maximum gray level
range (i.e. G¼255 for eight bit images), ðx; yÞ are the normalized
pixel coordinates, and iDðx; yÞ is the image with its gray levels in
the range [0,G]. It can be noticed that the pattern given by Eq. (1)
comprises the sum of three fringe patterns: one with vertical
fringes, another with horizontal fringes, and the last one with
fringes almost at 451. If we denote the carrier terms as follows,

cxðx; yÞ ¼ 2πf x; cyðx; yÞ ¼ 2πf y; cxyðx; yÞ ¼ 2πðf þ1Þxþ2πf y ð2Þ
then the following relation holds,

cxyðx; yÞ�cxðx; yÞ�cyðx; yÞ ¼ 2πx; ð3Þ
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its cosine is a one period vertical fringe. This is an important
relation that we will use later on. To simplify our notation, we will
drop off the ðx; yÞ variables, but they will be implicit, although in
some formulas, they are included to emphasize their dependence.

The intensity profile that we will obtain after projecting Eq. (1)
onto the object's surface will be given by

i¼ aþb½ cos ðcxþφxÞþ cos ðcyþφyÞþ cos ðcxyþφxyÞ�; ð4Þ
where a and b are background and amplitude terms that depend
on the object's reflectivity, respectively, and φx, φy and φxy are the
phase functions related to the surface height hðx; yÞ. Eq. (4) can be
rewritten in the following form

i¼ aþdxexpðjcxÞþdyexpðjcyÞþdxyexpðjcxyÞ
þdn

xexpð�jcxÞþdn

yexpð�jcyÞþdn

xyexpð�jcxyÞ; ð5Þ

where dx¼ð1=2ÞbexpðjφxÞ, dy¼ð1=2Þb expðjφyÞ, dxy¼ð1=2ÞbexpðjφxyÞ,
j¼

ffiffiffiffiffiffiffi
�1

p
and n means complex conjugated.

The Fourier transform of Eq. (5) can be expressed as:

Iðu; vÞ ¼ Að0;0ÞþDxðu�f ; vÞþDyðu; v�f ÞþDxyðu�f�1; v�f Þ
þDn

xðuþ f ; vÞþDn

yðu; vþ f ÞþDn

xyðuþ f þ1; vþ f Þ; ð6Þ

where ðu; vÞ are the frequency coordinates, and f is the carrier
frequency of Eq. (1). Eq. (6) consists of seven spectrums (denoted
by capital letters) centered on frequencies (0,0), (f,0), (0,f), (fþ1,f),
(� f,0), (0,� f) and (� f�1,� f). Since the distances from center to
center of the spectrums depend on frequency f, no overlap among
them occurs for f that is big enough. Because each spectrum and
its conjugate contain the same phase information (except for their
opposite sign), we select only Dx, Dy and Dxy to be filtered. The
separations of those terms are carried out by a band-pass filter,
and then transformed into the space domain by the inverse of the
Fourier transform. The respective phases (modulus 2π) are
obtained with the arctg of the imaginary part over the real part.
This way we end up with the following three phases (modulus 2π):

Φx ¼ ½cxþφ′x�mod 2π ¼ arctgfIm½Dxðu�f ; vÞ�=Re½Dxðu�f ; vÞ�g; ð7aÞ

Φy ¼ ½cyþφ′y�mod 2π ¼ arctgfIm½Dyðu; v�f Þ�=Re½Dyðu; v�f Þ�g; ð7bÞ

Φxy ¼ ½cxyþφxy�mod 2π ¼ arctgfIm½Dxyðu�f�1; v�f Þ�=Re½Dxðu�f�1; v�f Þ�g;
ð7cÞ

hence, the wrapped difference of Φxy, Φx and Φy is given by

Φw ¼ arctg
sin ðΦxy�Φx�ΦyÞ
cos ðΦxy�Φx�ΦyÞ

� �
; ð8Þ

which, by Eq. (3), consists of only one period, and because of the
arctg function, is within the range 0 to 2π. Following with our
procedure, it is important to get Φ, the unwrapped function of the
low frequency wrapped function Φw. If the object height under
test is low enough, we may have Φw ¼Φ directly, without any
additional unwrapping procedure; otherwise, it will be necessary
to use an unwrapping technique. In any case the following relation
is satisfied

Φ¼ ðcxy�cx�cyÞþðφxy�φx�φyÞ ð9Þ
Using Eq. (3) in Eq. (9) we obtain

Φðx; yÞ ¼ 2πxþφEqðx; yÞ; ð10Þ
where φEq ¼ φxy�φx�φy represents the equivalent phase of the
phase differences. Then, what we have obtained is the phase
Φðx; yÞ of the projection of a vertical fringe pattern with one
period. However, as it is known [11], the phase and the height
surface can be approximated by

φðx; yÞ ¼ 2πf hðx; yÞ=D; ð11Þ

where D is a constant that depends on the camera and projector
positions, hðx; yÞ is the surface height, and f is the frequency of the
carrier fringes (in Eq. (10), f ¼ 1). We considered D¼ l=d, where d
is the separation between the camera and the projector and l is the
distance from the projector to the surface of the reference plane.

Since the surface height calculated from the known phase
function depends on the frequency of the projected fringes,
hðx; yÞ ¼Dφðx; yÞ=2πf , it is desired to project fringes with frequen-
cies as high as possible in order to get also higher resolution. In
our case, the phase Φx calculated with Eq. (7a) was obtained with a
carrier frequency f ; then, in principle, it is f -times more sensitive
than the phase Φ obtained with Eq. (10), with the drawback that
Φx is a wrapped phase function. Then, we will describe a
procedure to get Φx provided Φ, or more precisely, to unwrap Φx

given Φ.
From Eqs. (2), (4) and (10), we can see that multiplying Φðx; yÞ

by f gives us an approximate value of the unwrapped phase
Φxðx; yÞ. On the other hand, the fringe order number Nðx; yÞ relates
the wrapped Φxðx; yÞ and unwrapped Φðx; yÞ phase functions with
the equation

Nðx; yÞ ¼ ½f Φðx; yÞ�Φxðx; yÞ�=2π; ð12Þ

then, we can unwrap Φx using the equation

Φx
uðx; yÞ ¼Φxðx; yÞ�2πNðx; yÞ; ð13Þ

where Φx
uðx; yÞ is the unwrapped phase of Φxðx; yÞ.

We can also obtain the fringe orders of Φxðx; yÞ in the following
way,

N0ðx; yÞ ¼ ½f2πx�Φxðx; yÞ�=2π; ð14Þ

to get another unwrapped estimation of Φxðx; yÞ given by

Φx
0uðx; yÞ ¼Φxðx; yÞ�2πN0ðx; yÞ; ð15Þ

with the drawback that Φx
0uðx; yÞ is not sensitive to phase jumps

greater than 2π, as Φx
uðx; yÞ is. N0ðx; yÞ and Nðx; yÞ are important

functions that we will use in Section 3 to discard undesired error
introduced by our method.

An important aspect is the maximum dynamic range that we
can work with. From Ref. [11], we know that for a traditional one
direction sinusoidal projected fringe of frequency f and maximum
background frequency f b, the following condition is obtained (only
two spectrums interact):

∂φðx; yÞ
∂x

����
����o2πðf�f bÞ; ð16Þ

However, in our case, we will have the interactions among the
four spectrums Að0;0Þ, Dxðu�f ; vÞ, Dyðu; v�f Þ and Dxyðu�f�m; v�f Þ
(Eq. (6)). Since the separation among the centers of those spec-
trums is greater or equal to f, the cutoff frequency radius of each
spectrum must be greater than or equal to f/2. Then, from the
definition of local frequencies along x and y directions,
2πf xðx; yÞ ¼ ∂φðx; yÞ=∂x and 2πf yðx; yÞ ¼ ∂φðx; yÞ=∂y, respectively, the
new conditions for our algorithm are

∂φðx; yÞ
∂x

����
����o2πðf�f bÞ; ð17aÞ

∂φðx; yÞ
∂y

����
����o2π

f
2

� �
; ð17bÞ

Given that in general f bo f =2 we can simplify the conditions to be

∂φðx; yÞ=∂x
�� ��o2πðf =2Þ and ∂φðx; yÞ=∂y

�� ��o2πðf =2Þ ð17cÞ

The maximum slope (steep of the surface) measurable with-
out ambiguity can be estimated from Eqs. (11) and (17a)–(17c).
Deriving Eq. (11) and substituting in the previous two equations
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