
Sensors and Actuators B 161 (2012) 578– 586

Contents lists available at SciVerse ScienceDirect

Sensors  and  Actuators  B:  Chemical

j o ur nal homep a ge: www.elsev ier .com/ locate /snb

Quantitative  analysis  of  multiple  kinds  of  volatile  organic  compounds  using
hierarchical  models  with  an  electronic  nose

Daqi  Gao ∗,  Fangjun  Liu,  Ji  Wang
State Key Laboratory of Bioreactor Engineering, Department of Computer Science, East China University of Science and Technology, Shanghai 200237, China

a  r  t  i  c  l  e  i n  f  o

Article history:
Received 1 June 2011
Received in revised form 4 October 2011
Accepted 2 November 2011
Available online 9 November 2011

Keywords:
Hierarchical models
Discrimination
Quantification
Odors
Electronic nose

a  b  s  t  r  a  c  t

This  paper  studies  hierarchical  discrimination  and quantification  models  in  order  to  simultaneously  quan-
tify multiple  kinds  of  odors  with  an  improved  electronic  nose.  Such  tasks  are  first  regard  as  multiple
discrimination  tasks  and  then  as  multiple  quantification  tasks,  and  implemented  by  the  hierarchical
models  with  the  divide-and-conquer  strategy.  The  discrimination  models  are  the common  classifiers,
including  nearest  neighbor  classifiers,  local  Euclidean  distance  templates,  local  Mahalanobis  distance
templates,  multi-layer  perceptrons  (MLPs),  support  vector  machines  (SVMs)  with  Gaussian  or  polyno-
mial kernels.  Similarly,  the  quantification  models  are  multivariate  linear  regressions,  partial  least  squares
regressions,  multivariate  quadratic  regressions,  MLPs,  SVMs.  We  developed  several  types  of  hierarchi-
cal model  and  compared  their  capabilities  for quantifying  12  kinds  of  volatile  organic  compounds  with
the  improved  electronic  nose.  The  experimental  results  show  that  the  hierarchical  model  composed  of
multiple  single-output  MLPs  followed  by  multiple  single-output  MLPs  with  local  decomposition,  vir-
tual balance  and  local  generalization  techniques,  has  advantages  over  the  others  in  the  aspects  of  time
complexity,  structure  complexity  and  generalization  performance.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Odors cannot be seen by eyes and felt by hands. People usu-
ally use some vague terms to describe their characteristics, such as
strong, weak, stimulative, fragrant, top-quality, second-rate, nor-
mal, abnormal, sweet, foul, and abominable [1,2]. We  can depict
one kind of odor by means of another. For example, an odorous
sample may  be said to be like orange or banana, but what is the
orange or the banana odor? Such questions are very difficult to be
answered. Odors ever smelled can remain in our memory and be
brought to our mind by imagination, but cannot be quantitatively
compared by data or recode. It is not an easy thing to quantify odors
only by our olfaction, namely our noses. Accordingly, sensory eval-
uation of odor qualities is not objective and fair enough, even if
given by experts. Under the circumstances, electronic noses (ENs)
emerge as the times require [3].

Electronic noses have a wide range of applications. After sens-
ing odors with a gas sensor array and analyzing the resulting
data by means of appropriate pattern recognition methods, an EN
can determine products’ classes, grades and freshness; distinguish
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genuine from sham; control production processes; readjust pre-
scriptions; monitor environmental pollutions, etc. The application
objects include perfumes [4–7], milks and teas [8–10], alcoholic
beverages [11–13],  fruits [14], fishes and meats [15–17],  environ-
mental air [18], water [19,20], medical treatments [21], drugs [22],
warfare agents [23,24],  and even bloods and bacteria [25,26]. Can
we find an absolutely odorless material?

There are many kinds of odors in the natural world, and often
tens, hundreds and even thousands of components in one kind.
For example, there exist about 50 main aromatic components in a
brewing alcoholic drink. If the aroma of the drink changes, an EN is
required to judge which components change and how much they
change. Currently, ENs are limited in capabilities to carry out the
real-time quantitative analysis of odors [1,4–26].  Therefore, there
is an urgent need to find suitable pattern recognition methods to
both discriminate and quantity multiple kinds of odors, simple or
complex [1].

An unfavorable case for odor quantification is that the lower the
concentrations of odors, the smaller the differences between them.
In other words, different sorts of low-concentration odors may be
close to each other in the measure space. The relationships between
strengths of multiple kinds of odors and their components may be
multiple complex curved surfaces, which may  intersect with each
other. Therefore, the discrimination and quantification of multi-
ple kinds of odors will bring about great difficulties and challenges
to the existing pattern recognition methods, including neural
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networks [1,7,14,18,27] and support vector machines (SVMs)
[28,29].

A single prediction model with multiple output units will give
multiple predicted values for a specific odorous sample. Can we
thus say that the sample belongs both to an odor ωA with a con-
centration �A and to another odor ωB with a concentration �B? It is
unallowable. In other words, a single prediction model with multi-
ple output units fails to quantify multiple kinds of odors, regardless
simple or complex [1,2,30–34].  In order to recognize many kinds
of odors and quantify their concentrations as well, the following
approaches are available.

(A) A single multi-output (SMO) discrimination model [1] or a
SMO  discrimination model followed by multiple multi-output
(MMO)  discrimination models [30,31] is used. The two  solu-
tions actually consider the quantification task as a pure
discrimination one, and a concentration point as a class. The dis-
advantages of these solutions include complicated structures,
long learning time and serious imbalance between classes
when many kinds of odors and many concentrations exist.
Consequently, these two models are only suitable for a small
number of classes of odors with limited concentrations [30,31].

(B) An SMO  discrimination model followed by multiple single-
output (MSO) quantification models, called an SMO–MSO
model, or two groups of MSO  quantification models in cascade,
called an MSO–MSO model [32], is employed. These solutions
consider the quantification task first as multiple discrimina-
tive tasks and then as multiple quantitative tasks. However, the
defects that exist in case (A) will still appear when there are too
many kinds of odors and concentration points.

Because the existing pattern recognition models are quite lim-
ited in their capabilities for identifying many kinds of odors and
quantifying their concentrations as well [30–34],  this paper devotes
to studying hierarchical models and finding out the appropriate
model to accomplish such tasks. The remainder of this paper is orga-
nized as follows: Section 2 illustrates an improved electronic nose
and introduces its working principle. In Section 3, we propose the
structure of a hierarchical model and possible component units.
Furthermore, we analyze the time complexities, structure com-
plexities and generalization performances of several hierarchical
models. Section 4 presents the experimental results for quantify-
ing 12 kinds of volatile organic compounds (VOCs). Finally, Section
5 comes to our conclusions.

2. Experimental

Fig. 1 shows an improved electronic nose [35], which consists
of a test box, a personal computer (PC), six headspace vapor gen-
erators and a clean air cylinder. The test box mainly contains
a thermostatic chest, an automatic lift device, a sampling nee-
dle, a miniature diaphragm vacuum pump, three two-positional
two-way electromagnetic valves, a flow meter, two  flow valves, a
4-channel direct current (DC) source as well as control and measure
circuits. The array, which is installed within the circular chamber in
the thermostatic chest, is composed of 16 TGS gas sensors, namely
TGS800, 812, 813, 816, 821, 822, 823, 824, 825, 826, 830, 831, 832,
842, 880, 883T, all provided by Figaro Inc., Japan. The load resistor
of each gas sensor is fixed at 10 k�.

The samples, liquid or solid, and headspace vapors are kept
at the constant temperature of 42 ± 0.1 ◦C for 30 min  before mea-
sured, and the chest always kept at 55 ± 0.1 ◦C. In order to get good
repeatability, a sample of 10 ml  and its headspace vapor is mea-
sured only one time, and a glass flask of 200 ml  to hold the sample

and thus generate the vapor is also used only once. The responses
of gas sensors are limited to the range (0.0, 10.0 V) by hardware.

The gas sensor array is calibrated by clean air before sampling.
The clean air from the cylinder passes through the flow valve 2,
the electromagnetic valve 3, the outlet, the interior and the inlet of
the circular chamber, and the needle in sequence before exhausted
into the atmosphere, at the flow rate of 600 ml/min. During the
course, the electromagnetic valve 3 is on while the other two are off.
Consequently, the gas sensors exactly recover to their preliminary
state.

The working principle of the improved electronic nose is
described as follows. While sampling, under the roles of the PC
and the automatic lift device, the headspace vapor generator rises,
and the sampling needle fixed under the inlet of the chamber
thus contacts the headspace vapor. With the aid of the miniature
diaphragm pump, the vapor in the flask is drawn into the circular
chamber where the gas sensor array is mounted in at the flow rate
of 600 ml/min, forced to skim across the sensitive films of gas sen-
sors, and finally exhausted into the air at the waste gas outlet. Along
with the flow of vapors, the gas sensors produce analogous sensitive
responses, which are then converted into digital by the data acqui-
sition card and stored in the PC as a data file. For a sample measured,
a 16-dimensional response vector is thus gotten, called a pattern
x ∈ R16 hereafter, because the maximum steady-state response of a
gas sensor is regarded as a variable.

The purpose of the experiment is to discriminate twelve kinds
of VOCs, ethanol, butanol, hexanol, ethyl acetate, ethyl propionate,
ethyl butyrate, ethyl valerate, ethyl caproate, ethyl heptanoate,
ethyl octanoate, ethyl lactate, and isoamyl acetate, and quantify
their concentrations as well by measuring their headspace vapors
with the improved electronic nose. These VOCs are the main fra-
grant components in brewing alcoholic drinks. They are diluted
with distilled water into required concentrations.

3. Hierarchical models and their component units

3.1. Structure of hierarchical models

The divide-and-conquer strategy is an effective approach for the
discriminative and quantitative analysis of multiple kinds of odors
[30–34]. Fig. 2 illustrates a hierarchical model for implementing
such tasks. Seen from the horizontal direction, a pair of hierarchi-
cal modules represents a specific kind of odor. The former module
is responsible for discrimination, whose role is to separate the rep-
resented odor from the others, and the followed one is in charge of
quantification, whose role is to predict the strengths and concen-
trations of the represented odor. If there are n kinds of odors, there
are n pairs of modules, one for one. Seen from the vertical direc-
tion, there exist two parallel columns of modules. The modules in
the first column are for discrimination, and those in the second
column are for quantification.

3.2. Discrimination models

Because of the nonlinear distributions of odors in the mea-
sure space, the classical linear discriminant analysis (LDA) is not
adopted [11,36]. The radial basis function (RBF) networks [9,11]
and fuzzy inference models [1,37] are not included because they are
not often employed for odor discrimination in the electronic noses.
k-Nearest-Neighbor (k-NN) classifiers, Euclidean or Mahalanobis
distance templates, multi-layer perceptrons (MLPs) and SVMs are
able to form nonlinear decision boundaries and commonly used in
the electronic noses [1,11,29–34]. They are thus chosen as the com-
ponent units of discrimination modules of the hierarchical model
shown in Fig. 2. In the following subsections, we will introduce the
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