
2-D Continuous Wavelet Transform for ESPI phase-maps denoising

Nivia Escalante n, Jesús Villa, Ismael de la Rosa, Enrique de la Rosa, Efrén González-Ramírez,
Osvaldo Gutiérrez, Carlos Olvera, María Araiza
Laboratorio de Procesamiento Digital de Señales, Facultad de Ingeniería Eléctrica,Universidad Autónoma de Zacatecas, Av. Ramón López Velarde #801, Zacatecas, C.P. 98000, Mexico

a r t i c l e i n f o

Article history:
Received 4 October 2012
Received in revised form
5 March 2013
Accepted 6 March 2013
Available online 17 April 2013

Keywords:
Fringe analysis
Denoising
Multiresolution analysis

a b s t r a c t

In this work we introduce a 2-D Continuous Wavelet Transform (2-D CWT) method for denoising ESPI
phase-maps. Multiresolution analysis with 2-D wavelets can provide high directional sensitivity and high
anisotropy which are proper characteristics for this task. In particular, the 2-D CWT method using Gabor
atoms (Gabor mother wavelets) which can naturally model phase fringes, has a good performance
against noise and can preserve phase fringes. We describe the theoretical basis of the proposed technique
and show some experimental results with real and simulated ESPI phase-maps. As can be verified the
proposal is robust and effective.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Optical methods are widely used for nondestructive testing
and metrology. In particular, Electronic Speckle Pattern Interfero-
metry (ESPI) is used to measure stress, deformation, vibration, etc.
Important steps in ESPI techniques are the demodulation of fringe
patterns and phase unwrapping. Phase unwrapping is a technique
used to remove the 2π phase that jumps in the wrapped phase-map.
Recovering the continuous phase-map is usually a big challenge [1],
however, ESPI phase-maps are often very noisy. This characteristic
hinders an easy and reliable phase unwrapping, therefore a proper
filtering is often required.

Recently, several phase-map denoising techniques have been
proposed. In most of these works it is remarked that the impor-
tance of filtering along the fringe orientation in order to preserve
the fringes. Tang et al. [2–4] have reported some interesting
techniques based on variational methods solving oriented partial
differential equations (OPDE). In our previous works we
also proposed a filtering technique using the regularization the-
ory: the Regularized Quadratic Cost Function (RQCF) [5,6]. How-
ever, a drawback of all mentioned techniques is that they require
the previous estimation of the so-called fringe orientation
which, as it uses the computation of the image gradient, could
be an inaccurate procedure in the presence of noise and low-
modulation of fringes. A typical characteristic of the resulting
filtered phase image is the presence of structures due to the
changes in the orientation angles, which is also a drawback. Others

techniques such as the Localized Fourier Transform (LFT) filter for
noise removal in ESPI phase-maps [7] and the Windowed Fourier
Transform (WFT) [8] are techniques that work effectively without
a previous estimation of the fringe orientation. However, in the
case of the WFT technique eight parameters have to be adjusted
depending on the phase image and it requires a long processing
time.

The 1-D Discrete Wavelet Transform (1-D DWT) is a tool that
provides local, sparse and decorrelated multiresolution analysis of
images, these properties being very much exploited for denoising.
However, the 1-D wavelet methods present some strong limita-
tions that reduce their effectiveness in two dimensions. Although
1-D wavelets have impacted in image processing they do not
efficiently represent elements with high anisotropy, as in the case
of wrapped phase-maps. The reason is that 1-D wavelets are non-
geometrical and do not properly model the regularity of such
structures. Therefore, the most serious disadvantage of the 1-D
DWT in phase-map denoising is its poor directionality. For
instance, in the work presented by Kauffmann et al. [9], the
authors present a method to reduce the speckles in TV holographic
fringes using Daubechies wavelets with thresholding. Such wave-
lets, however, are not very effective at image edges. Also, Shakher
et al. [10] proposed a method using Symmetric Daubechies
wavelets, however, authors do not present explicit formulas.

In the last decade, 2-D wavelets [11] [12] have been used as a
proper alternative to the weakness of the 1-D DWT to sparsely
representing elements with high anisotropy. The 2-D CWT has
already been used for interferogram demodulation [12]. In parti-
cular, the 2-D CWT using Gabor atoms (Gabor atoms are composed
of complex periodic functions modulated by Gaussian functions)
can naturally model phase fringes. For this reason we propose a
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2-D CWT method for phase-map denoising. As will be shown, this
proposal has a high performance against noise similar to the LFT
and WFT methods. Additionally, we provide the MATLAB function
code in [13].

This paper is organized in the following way. In Section 2 we
describe the mathematical fundamentals of the proposed method.
In Section 3 we describe a practical implementation of the 2-D CWT
denoising method. In Section 4 we present some experimental
results. In Section 5 we present a discussion of the experimental
results. Finally in Section 6 we present the conclusions.

2. The 2-D Continuous Wavelet Transform

The wavelet transform has become a standard tool in signal and
image processing, and it has found applications in almost all fields
of physics, engineering and applied mathematics. The 2-D CWT
provides localized spectral information of the analyzed dataset
and it covers the domain of the analyzed data with a continuous
analysis from which detail, shift-invariant spectral information of
different positions and orientations can be obtained. The 2-D CWT
is used for analysis and features detection in images, with special
emphasis on the detection of singularities (contours, sharp
transitions, etc.).

Mathematically, images can be represented as two dimensional
arrays in which each element represents the intensity. For our
purposes, a wrapped phase-map ϕ may be represented as a
complex image

Iðx,yÞ ¼ eiϕðx,yÞ ¼ cos ϕðx,yÞþ i sin ϕðx,yÞ: ð1Þ
Then, its 2-D continuous wavelet decomposition can be defined as

CWTðξ,η,θ,aÞ ¼
Z ∞

−∞

Z ∞

−∞
Iðx,yÞψn

ξ,η,θ,aðx,yÞ dx dy, ð2Þ

where ψξ,η,θ,aðx,yÞ represents the family of wavelets, (x,y) are the
image coordinates, and θ∈ð−π,π� the orientation angle. The family
of wavelets ψ are shifted by ξ and η, oriented by the angle θ, and
scaled by factor a. The n symbol indicates the complex conjugated.

The mother Gabor wavelet in 2-D can be expressed as

ψξ,η,θ,aðx,yÞ ¼ exp −
π½ðx−ξÞ2þðy−ηÞ2�

a

" #

�exp i2π
f
a
½ðx−ξÞcos θþðy−ηÞsin θ�

� �
, ð3Þ

where f is the frequency (Fig. 1).
Substituting (1) and (3) in (2) we obtain

CWTðξ,η,θ,aÞ ¼
Z ∞

−∞

Z ∞

−∞
exp½iϕðx,yÞ�

�exp −
π½ðx−ξÞ2þðy−ηÞ2�

a

" #

�exp −i2π
f
a
½ðx−ξÞcos θþðy−ηÞsin θ�

� �
dx dy: ð4Þ

To simplify Eq. (4), let x′¼ x−ξ, y′¼ y−η and ðχ,γÞ ¼
ðf =a cos θ,f =a sin θÞ, where ðχ,γÞ represents a vector of frequencies
in the direction of θ. Using Taylor's expansion we know that

ϕðx′þξ,y′þηÞ≈ϕðξ,ηÞþ ∂ϕ
∂ξ

x′þ ∂ϕ
∂η

y′
� �

: ð5Þ

Then, we can approximate Eq. (4) as follows:

CWTðξ,η,θ,aÞ≈exp½iϕðξ,ηÞ�
Z ∞

−∞

Z ∞

−∞
exp i

∂ϕ
∂ξ

x′þ ∂ϕ
∂η

y′
� �� �

� exp −π
ðx′2þy′2Þ

a

� �

�exp½−i2πðχx′,γy′Þ� dx′ dy′: ð6Þ

The integral represents the Fourier transform of a 2-D complex
periodic function with frequency ∇ϕðξ,ηÞ=2π, modulated by a
scaled Gaussian function. Finally, after applying proper Fourier
theorems we find that

CWTðξ,η,θ,aÞ≈exp½iϕðξ,ηÞ�

�exp −aπ χ−
1
2π

∂ϕ
∂ξ

� �2

þ γ−
1
2π

∂ϕ
∂η

� �2
" #( )

: ð7Þ

From the mathematical point of view, the 2-D CWT using Gabor
atoms provides a local spectral energy density concentrated
around a given position in the frequency domain, which is
adequate to model the phase image. It is remarkable that the
2-D CWT represents a very detailed frequency and oriented
decomposition of Iðx,yÞ. Fig. 2 shows that the transformation is
performed along different directions and frequencies. The fre-
quency value at the center of circle is equal to zero. The orientation
θ is used to describe angles in the range of ð−π,π�.

2.1. Denoising with the 2-D CWT

Using 2-D CWT spurious information or noise may be effi-
ciently removed in the following way: Consider that for every ðξ,ηÞ
of the CWT we find the maximum magnitude of the 2-D ðθ,aÞ
coefficients map, which represents the local phase-fringe-
orientation and frequency. We call this maximum ðθr ,arÞ and the
2-D ðξ,η,θr ,arÞ map is called the ridge of the 2-D CWT. By extracting
the ridge, all the coefficients contributed by the noise are removed.
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Fig. 1. Example of a 2-D Gabor wavelet at θ¼ π=4. (a) Real part, (b) imaginary part.
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