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Abstract

A model based on the response of a micro-rheometer which permits the measurement of the linear viscoelastic properties of small volumes of a
fluid is described. The configuration involves a liquid being contained within a capillary bridge between two flat smooth parallel platens that are
actuated sinusoidally using a compliant MEMS device. Approximate closed-form equations are derived to analyse the data taking account of both
the capillary forces and those arising from viscoelastic flow. The approximate theory is compared to a full numerical simulation of the response of
the MEMS rheometer and the validity is discussed.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

There is often a need to measure the properties of liquid.
Occasionally the available volume of the liquid of interest
may be sufficiently small as to render conventional methods
of rheometry such as cone and plate rheometry [1], stormer
viscometry [2] or falling ball viscometry [3] inappropriate. Con-
sequently, there is a growing interest in the use of MEMS
devices to measure the required properties, especially with an
aim of encouraging high throughput. These devices include pres-
sure sensors [4], optical tweezers [5] and micro-particle image
velocimetry [6] amongst others [7–11]. The current paper exam-
ines the potential of employing MEMS for making a rheometer
based on squeeze flow, which is a convenient configuration
for this technology. In particular, the design and analysis of a
device based on sinusoidal oscillation for viscoelastic fluids in
the linear strain region will be described. As will be seen, the
linearisation of the model requires the use of small amplitudes,
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which precludes the use of traditional rheometers making this
model particularly suitable for use with micro system technol-
ogy.

The analysis of squeeze flow rheometry is an area of continu-
ing development in order to apply the method to fluids with more
complex constitutive behaviour [12–18] than those that exhibit
simple Newtonian flow. Generally steady rather than oscillatory
flow has been considered although there are notable exceptions
[14,16,19]. If the platens are not fully immersed so that the
liquid is contained as a discrete bridge, it is necessary to con-
sider the influence of the capillary forces that may be important
for small viscosities and platen displacement velocities. Also if
the micro-rheometer is based on a compliant oscillating device,
the mechanical properties of the device need to be taken into
account. These aspects have been neglected in previous work
and will be considered here.

2. The micro-rheometer

There are many possible different configurations that could
be employed for a micro-rheometer [6–12]. It is not the pur-
pose of this paper to suggest another alternative but rather to
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Fig. 1. Schematic of liquid bridge within the MEMS device.

consider the relevance of squeeze flow theory to micro-systems
technology. Consequently, here a generic device will be consid-
ered that comprises a fixed lower platen and a parallel rigid upper
platen with a known mass being supported by an elastic beam
or spring of known stiffness (see Fig. 1). It will be assumed that
the upper platen is electrostatically actuated with a sinusoidal
force of known frequency and magnitude.

The device will also have set operating parameters. It will
comprise of electrostatic plates of approximate area 80 mm2 and
gap 2 �m. It is assumed that the oscillation amplitude is in the
range 25–250 nm and this can be measured with a resolution
of 1 in 100. It is also assumed that the phase difference can
be measured between 0 and π/2 rad with an accuracy of 1◦;
the alternating voltage varies between 0.001 and 10 V with a
1 in 100 resolution and the frequency varies between 0.1 and
100 rad/s with a 1 in 100 resolution. This specification will allow
an estimate to be made of the range of liquid properties that could
be measured and also the associated errors.

3. Theory

It is assumed that the liquid is accommodated as a pendular
bridge between a fixed lower platen and a sinusoidally mod-
ulated upper platen (see Fig. 1). In a method similar to that
employed by Bell et al. [14], the dynamic properties of the liquid
can be calculated by measuring the amplitude of the oscilla-
tion of the upper platen and the phase difference between the
force and displacement of this platen. The geometry of the liq-
uid bridge as shown schematically in Fig. 1 is dependent on the
surface tension, the contact angle and the volume of the liquid;
it is assumed that the diameters of both platens are greater than
the contact diameter of the liquid bridge. The meniscus curva-
ture, ρ, is a function of the gap between the platens since the
hydrostatic pressure difference, �p, must be constant as defined
by the Laplace–Young equation (see Eq. (3)).

Viscoelastic and capillary forces act between the platens. Vis-
coelastic forces act only when the bridge is in motion as in the
case of sinusoidal squeeze flow. Generally if the radius of the
liquid bridge is at least 10 times greater than the gap, the lubri-
cation approximation can be applied [14]. This requires that the
liquid flows predominantly parallel to the surface of the platens
with any elongational or transient flows being neglected. This
corresponds to a radial pressure driven flow, which is analo-
gous to Poiseuille flow in a tube such that only a shear velocity
field exists. For most practical cases fluid inertial effects may
be ignored as generally the frequencies of interest are low

(<∼250 Hz) or the viscosities are high [15]. The oscillatory force
(Fv) arising from the viscoelastic response is given as [14]:

Fv = 3πη∗R4

2h3 iω eiωt (1)

where

η∗ = η′ − iG′

ω
(2)

Here η* and η′ are the complex and dynamic viscosities of the
fluid, ω is the angular frequency of oscillation G′ is the stor-
age modulus of the liquid, h is the current gap between the
platens and t is the time. Due to the curvature of the bridge
profile, the radius of the bridge varies along the z-axis. How-
ever, it is assumed in the derivation of Eq. (1) that the bridge is
cylindrical [14]. Here, to simplify the calculations for the vis-
coelastic force, the bridge radius, R, will be taken as the average
value which is equivalent to the radius of a cylinder of the same
volume.

The viscoelastic force acts to resist motion during either
the approach or separation of the platens. Strictly the above
equations apply to a fixed value of the bridge radius. In the
current scheme, this radius will vary sinusoidally. However, the
assumption will be made that the amplitude of oscillation will
be small compared to the gap so that the error involved will be
small.

The total capillary force, FC, is the sum of that due to surface
tension and that associated with the pressure difference arising
from the curvature across the liquid/vapour interface as given
in Eq. (3). It cannot be calculated analytically except in a few
special cases (for example cylindrical geometries and flat planes
[21]) and may be written as [20]:

FC = 2πRNγlv − πR2
Nγlv

(
1

RN
− 1

ρ

)
(3)

where γ lv is the surface tension of the liquid, RN is the neck
radius and ρ is the other principal radius of curvature of the
liquid bridge.

It is assumed that to a close approximation, the total force
exerted by the liquid may be given by the sum of the viscoelastic
and capillary forces. The response of the MEMS device is the
sum of the fluid forces (Eqs. (1) and (3)) and that arising from
the compliance of the device. Thus the complete response is as
follows:

m
d2z

dt2 + 3πη∗R4

2h3

dz

dt
+ kz + 2πRNγlv

−πR2
Nγlv

(
1

RN
− 1

ρ

)
= F0 sin ωt (4)

where z is the axial coordinate with the origin at the surface of the
lower platen (see Fig. 1), F0 is the driving force, k is the stiffness
of the MEMS device and m is the mass of the upper platen. Since
the current value of ρ has to be obtained numerically [21], this
equation cannot be solved analytically. Even if this were not the
case, the radius, height and the curvature of the bridge are non-
linear functions of time, which precludes an analytical solution
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