Contents lists available at ScienceDirect

Sensors and Actuators B: Chemical

journal homepage: www.elsevier.com/locate/snb

Layer-by-layer assembled nanorough iridium-oxide/platinum-black for low-voltage microscale electrode neurostimulation

CrossMark

SENSORS

ACTUATORS

Shota Yamagiwa^a, Akifumi Fujishiro^a, Hirohito Sawahata^a, Rika Numano^{b,c}, Makoto Ishida^{a,b}, Takeshi Kawano^{a,*}

^a Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan

^b Electronics-Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan

^c Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan

ARTICLE INFO

Article history: Received 27 June 2014 Received in revised form 15 August 2014 Accepted 11 September 2014 Available online 20 September 2014

Keywords: AIROF Nano-porous Microelectrode Neural stimulation

ABSTRACT

Electrical neural stimulating electrodes play an important role in medical applications and improving health/medical conditions. However, size reduction for low-invasive electrodes creates issues with high electrolyte/electrode interfacial impedance and low charge-injection characteristics, which makes it impossible to stimulate neurons/cells. To overcome these limitations, we propose an electrode material for low-voltage microscale electrode neurostimulation that combines the advantages of low impedance of iridium oxide (IrOx) with the enhanced surface area of platinum black (Pt-black). Based on a simple, rapid, low-temperature electroplating process, herein a low impedance and high charge-injection electrode is fabricated by a layer-by-layer assembly of IrOx/Pt-black with nanoscale roughness. The assembled nanorough-IrOx/Pt-black electrode has an impedance of $32 \Omega \text{ cm}^2$ at 1 kHz and a charge-injection delivery capacity (Q_{CDC}) of 46.7 mC cm⁻², which are 0.5 and 2.4 times the values for the same-sized IrOx/flat-Pt electrode, respectively. The stimulation capability of the nanorough-IrOx/Pt-black plated microelectrode is confirmed by in vivo stimulations of the sciatic nerve of a mouse. The threshold voltages of 8-µmdiameter and 11-µm-diameter electrodes are 700 mV and 300 mV, respectively. However, increasing the diameter of high Q_{CDC} nanorough-IrOx/Pt-black can further reduce the stimulation voltage. Consequently, nanorough-IrOx/Pt-black is applicable to low-voltage microscale electrode neurostimulations for powerful in vivo/in vitro electrophysiological measurements.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Electrical neural stimulating electrodes, which play an important role in medical applications, have been used to improve medical conditions, including epilepsy, Parkinson disease [1], blindness [2], and hearing loss [3]. Recent advances in brain-machine interface (BMI) technology, which enables direct communications between the brain and external actuators [4,5], have realized a powerful neural stimulation application where tactile feedback occurs through microscale stimulation of the somatosensory cortex, or the so called brain-machine-brain interface (BMBI)

E-mail addresses: yamagiwa-s@int.ee.tut.ac.jp (S. Yamagiwa),

[6]. Conventional electrodes, which are composed of sharpened needle-like metal electrodes with diameters of several tens of microns or larger, are typically used in electrical stimulations of neurons/cells [7]. Although the needle-electrode diameter can be further reduced using recent microfabrication technology for low invasive electrodes and chronic device implantations [8–10], size reduction-induced issues such as high electrolyte/electrode interfacial impedance and low charge injection characteristics of the electrode remain problematic in high-performance microscale stimulations of neurons/cells [11]. Such size reduction-induced issues make it impossible for the electrode to stimulate the target neurons, as well as the recording [12]. Moreover, improving both the impedance and charge-injection characteristics of the electrode is important to reduce the stimulating voltages applied to the electrode in a biological sample such as a brain or nerve.

Candidate electrode materials to improve the electrode's electrical properties have been reported: Pt-black [13], titanium nitride (TiN) [14], IrOx [15], poly(3,4-ethylenedioxythiophene) (PEDOT) [11], and carbon nanotube (CNT) [16]. Pt-black can enhance the

^{*} Corresponding author at: 1-1, Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan. Tel.: +81 532 44 6738.

fujishiro-a@int.ee.tut.ac.jp (A. Fujishiro), sawahata@int.ee.tut.ac.jp (H. Sawahata), numano@tut.jp (R. Numano), ishida@ee.tut.ac.jp (M. Ishida), kawano@ee.tut.ac.jp (T. Kawano).

Fig. 1. Fabrication process steps for a nanorough-IrOX/Pt-black electrode: (a) initial flat-Pt platform electrode, (b) Pt-black plating over the Pt electrode, (c) Au plating as the adhesion layer, and (d) Ir plating and subsequent activation of the Ir for nanorough-IrOX/Pt-black.

effective surface area of Pt by creating nanoporous [13], and its mechanical stability has been demonstrated by penetrating the Pt-black tipped microneedle into a rat's cortex [9]. IrOx is a material with an excellent charge-injection delivery capacity (Q_{CDC}) (e.g., $3.0 \,\mathrm{mC}\,\mathrm{cm}^{-2}$ for IrOx $\gg 0.075 \,\mathrm{mC}\,\mathrm{cm}^{-2}$ for Pt) [17]. Herein we combine these materials to develop low-impedance and high charge-injection electrodes *via* a layer-by-layer assembly of IrOx/Pt-black with nanoscale roughness based on electroplating, which is a simple, rapid, and low temperature ($<60 \,^{\circ}$ C) process. Hence, electrodes can be prepared on numerous device substrates, including silicon-microelectronics, flexible thin films, and three-dimensional micro/nanoelectromechanical systems (MEMS, NEMS) [8,9].

2. Methods

Nanorough-IrOx/Pt-black electrodes were fabricated by a layerby-layer nanoscale assembly technique. Of the three layers, the first layer of Pt-black was used as a nanoporous template to enhance the effective electrode area [13], while the second gold (Au) layer improved the interfacial adhesion between Pt-black and the subsequent Ir layer. The third layer of IrOx was used to improve Q_{CDC} of the electrode [15].

Fabrication was based on a simple, rapid, low-temperature electroplating process. The first layer of Pt-black was electroplated with a Pt chloride solution (10 g H_2 PtCl₆.6H₂O, 0.1 g Pb(CH₃COO)₂.3H₂O, and 300 ml deionized water (DIW) at room temperature) [13]. For a 100-nm thick Pt-black, the plating direct-current (DC) bias was 400 mV with a plating time of 10 s (Fig. 1b). After forming an Au adhesive layer at 32 °C (Neutronex Strike Au, Tanaka Holdings Co., Ltd.) (Fig. 1c), an ~10-nm-thick Ir layer was electroplated with an Ir solution (Iridex-300, Tanaka Holdings Co., Ltd.) at a 700-mV DC bias for 2 min and a plating temperature of 60 °C (Fig. 1d). Then Ir activation was achieved in a 0.5 M H₂SO₄

solution (room temperature). To avoid filling the nanoporous template of Pt-black with Au and Ir, thicknesses of the Au and Ir were limited to ~10 nm and ~10 nm, respectively. To activate Ir, we used triangle wave signals (+600 mV for high and -200 mV for low levels) at 100 mV s⁻¹ for 2300 cycles. Fig. 2a shows a fabricated millimeter-scale nanorough-IrOx/Pt-black electrode array using platform 0.5-mm × 1.5-mm flat-Pt electrodes. Fig. 2b shows a microscale nanorough-IrOx/Pt-black electrode fabricated using an 8-µm-diameter flat-Pt electrode.

3. Results and discussion

Nanorough-IrOx/Pt-black electrodes can be assembled on Pt electrodes with numerous patterns (Fig. 2a and b). The atomic force microscope (AFM) image shows that the enhanced surface roughness of the IrOx/Pt-black electrode is due to the first layer of Pt-black (Fig. 2d). The roughness of IrOx/Pt-black is larger than other IrOx layers formed on a flat-Pt electrode using the same plating process without forming Pt-black (Fig. 2c). The transmission electron microscope (TEM) image of IrOx/Pt-black confirms that the observed roughness in the AFM image is consistent with the cross-sectional structure of the electrode with a similar roughness of \sim 100 nm (Fig. 2e).

The electrical properties of the fabricated nanorough-IrOx/Ptblack electrode were measured in saline. For microscale electrode measurements, size reduction-induced effects such as the spreading resistance of the electrode [18] and parasitic impedance of the device interconnection [12] should be eliminated in order to obtain size-independent properties of a nanorough-IrOx/Pt-black electrode. Thus, we investigated a millimeter-scaled electrode (0.5 mm \times 1.5 mm, Fig. 2a).

To obtain the impedance shifts during the plating processes, herein step-by-step impedances for Pt, Pt-black, nanorough-Ir/Ptblack, and nanorough-IrOx/Pt-black were measured. Note that "nanorough-Ir/Pt-black" indicates a nanorough-Ir/Pt-black electrode before Ir activation. The electrode impedance was measured in a room temperature 0.9% NaCl saline solution bath with a sinusoidal wave (200 mV_{p-p} amplitude, 3×10^{-3} Hz-1 MHz) applied via a silver-silver chloride (Ag-AgCl) counter electrode. An impedance analyzer (Model 1260A Impedance/Gain-Phase Analyzer, AMETIC, Inc) was used in all impedance measurements. The step-by-step measurements clearly demonstrate a reduced electrode impedance. Compared to the initial Pt layer and the first layer of the Pt-black electrode, nanorough-IrOx/Pt-black has a 40-fold and 2-fold lower impedance at 1 kHz, respectively (Fig. 3a). The calculated impedance of nanorough-IrOx/Pt-black per unit area was 32 Ω cm² at 1 kHz. In the frequency range of 1-100 Hz, the electrode shifts from the capacitive phase to the resistive phase after Pt-black electroplating during the impedance measurements (Fig. 3b). The maximum resistive-phase angle in this electrode process occurs after IrOx formation by Ir activation. In a frequency range of 10^{-3} –1 Hz, nanorough-IrOx/Pt-black and flat-IrOx/Pt exhibit further capacitive phases compared to nanorough-Ir/Pt-black and Pt-black. This phase difference is due to the increased constant phase element (CPE) and the decreased interfacial resistance after IrOx formation by Ir activation [19].

To investigate the change in Q_{CDC} for different electrodes (Pt, Ptblack, nanorough-Ir/Pt-black, and nanorough-IrOx/Pt-black), we measured the step-by-step cyclic voltammogram (CV) responses. The electrodes were placed in the same saline bath, and swept from -0.85 to 0.9 V for Pt and Pt-black, and from -0.9 to 1 V for nanorough-Ir/Pt-black, nanorough-IrOx/Pt-black, and IrOx/flat-Pt at a constant sweep rate of 100 mV s⁻¹ versus a Ag-AgCl reference electrode and a Pt counter electrode. Each CV response was Download English Version:

https://daneshyari.com/en/article/744430

Download Persian Version:

https://daneshyari.com/article/744430

Daneshyari.com