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The authors have investigated impact of linear absorption on self-focusing of Gaussian laser beam in
collisional plasma. The nonlinearity in dielectric constant considered herein is mainly due to the elastic
electron-ion collisions. A second order differential equation of dimensionless beam width parameter
has been derived and solved numerically. It is observed that absorption plays a vital role in self-
focusing of laser beams and weakens the stationary oscillatory character of beam-width parameter
with distance of propagation. We have also considered the effect of intensity, relative density and
parameter characterizing nature of collisions on propagation characteristics.
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1. Introduction

Technological development in the field of laser physics has
ushered a new era where highly intense lasers are available. This
has opened a new vista of novel applications not only in other
fields but also in plasmas such as laser-electron acceleration
[1-3], inertial confinement fusion [4-6] and ionospheric modifi-
cation [7-10]. To make these applications feasible, it is desirable
that the laser beam should propagate several Rayleigh lengths
(Rg). But in vacuum, the laser beam propagation is limited by
diffraction characteristic distance Ry ~ kr3, where k is the wave-
number and ry is the laser spot-size in vacuum; hence self-
focusing of laser beams occupies a unique place in laser-plasma
interaction. Experiments and simulations relevant to self-focusing
have proved that an intense laser beam propagates a long
distance with self-focusing offsetting the diffraction divergence.
The non-uniform distribution of laser beams along the wave front
causes the inhomogeneity of refractive index (effective dielectric
constant) of medium on account of inherent nonlinearities, which
is responsible for the self-focusing of laser beams [11-13]. In
plasmas, the ponderomotive force acting on electrons due to the
gradient of electric field intensity would redistribute the electrons
along the wavefront, which leads to the ponderomotive non-
linearity [13]. The relativistic nonlinearity [14] is attributed to
the dependence of electron mass on the quiver velocity of the
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electrons in the laser field. In addition, the enhancement of
electron temperature by electric field and consequent redistribu-
tion of the electrons induced by Ohmic heating and collisional
energy loss would modify the radial variations of the effective
dielectric constant; this phenomenon is commonly known as
collisional nonlinearity [13]. It has been said [15] that the change
in the refractive index of the medium induced by a Gaussian
beam due to the ponderomotive force is about 6 times that
induced by the collisional phenomena and hence much lower in
magnitude with relativistic effects being even weaker; here ¢ is
the fraction of excess energy lost by electron in collision with
heavy particles. However, when this effect is significant, the
absorption of the beam is important, which accounts for the little
significance of this mechanism in practical situations.
Theoretical and experimental researchers have conducted
many investigations on the interaction between lasers and colli-
sional plasmas. In theoretical studies of collisional plasmas, laser—
plasma interactions, fast-electron generation and transport in fast
ignition [16], superthermal electron generation [17] and colli-
sional absorption [18] have been investigated. In addition, simu-
lation results of fast ignition with ultrahigh intensity laser [19],
stationary laser beam filaments [20], transverse electron suscept-
ibility and the electromagnetic wave absorption [21] have been
obtained. Ghanshyam and Tripathi [22] invoked the stimulated
Raman scattering instability of laser beam propagating through a
collisional plasma in a self-focused filament. Ma [23] investigated
electromagnetic wave propagation in highly collisional plasma.
Amrita and Sharma [24] analyzed the thermal self-focusing of a
laser in collisonal plasma. Sodha et al. [25] investigated focusing
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of electromagnetic beams in collisional plasmas, with finite
thermal conduction. Sharma et al. [26] employed an analytical
model to describe the spatiotemporal evolution of a laser pulse
propagating through a plasma and studied electromagnetic beam
profile dynamics in collisional plasma. The filamentation instabil-
ity in a collisional magnetoplasma with thermal conduction has
been reported by Sodha and Faisal [27]. The effect of electron
temperature on laser beam propagation in underdense collisional
plasma has been studied by Xia et al. [28]. In experimental studies
of collisional plasmas, the dynamics of a dense laboratory plasma
jet [29] and the stimulated Brillouin and Raman scattering from a
randomized laser beam [30] have been reported. In particular,
owing to their prospects for wide applicability and their effects on
other nonlinear processes, a large number of investigations focus
on beam self-focusing in collisional plasma.

In the present paper, attention is being paid to address a
theoretical study of the self-focusing of Gaussian laser beam in
underdense collisional plasma with arbitrary nonlinearity. In
addition to adopting absorption parameter, our study also incor-
porates the effect of intensity parameter, relative density para-
meter and parameter characterizing nature of collisions on the
propagating variations of beamwidth parameter in collisional
plasma. In Section 2, we have set up and derived a differential
equation for beam width parameter f through Wentzel-Kramers-
Brillouin (WKB) and paraxial approximations using the parabolic
equation approach. The results are presented graphically in
Section 3 and discussed. Finally, a brief conclusion is added in
Section 4.

2. Analysis

Consider the propagation of an electromagnetic wave of
angular frequency w in a homogeneous plasma along the z axis.
The initial intensity distribution of the beam is assumed to be
Gaussian and is given by

2
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where r is the radial coordinate of cylindrical coordinate system,
To is the initial beam width and E is the electric vector satisfying
the wave equation
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which may be directly derived from Maxwell’s equations by
neglecting the term V(V-E). For a transverse field, V-E=k-E=0,
k being the propagation wave vector. Even if E has a longitudinal
component the term V(V-E) can be neglected provided
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The condition (3) is observed to be true in almost all the cases
of interest in electromagnetic wave propagation in plasmas.

The effective dielectric constant of homogeneous gaseous
plasma is significantly modified when a laser beam passes through
it and can, in general, be expressed as
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where ¢o=1—Q? and @ are the linear and nonlinear parts of the
dielectric constant respectively, &;=Q%(v/w) takes care of absorp-
tion and Q=w,/w, with w, as the plasma frequency, given by
wf, =4nn.e* /m, where e and m are the charge and rest mass of the
electron respectively, and 1, is the density of the plasma electrons
in the absence of the beam. We limit ourselves to the case where
¢; is field independent i.e., absorption is linear and ¢; < &g which

implies that absorption is weak. The form of the function @ is
different in different physical situations, but the dependence on
EE* is a common feature. With increasing beam power the
dielectric constant tends to reach its saturation value. The non-
linear and saturating character of the dielectric constant leads to
some interesting features in the propagation of the laser beam
and has received considerable attention.

The nonlinear dielectric constant for collisional plasma can be
expressed as [13]
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with o=e2M/6m?w?ksTy, where M is the mass of scatterer in the
plasma, kg is Boltzmann'’s constant, Ty is the equilibrium plasma
temperature and s is a parameter characterizing the nature of
collisions. In the case of collisions of the electrons with neutral
particles s may be taken as 1 while for collisions of the electrons
with ions, it is —3. In this paper we employ the latter case that
takes place predominantly in upper ionosphere. The analysis
herein is in any case based only on the form of Eq. (5) and not
the detailed physics behind it.

Now, introducing E=A(r,z)exp( —ikz), where A(r,z) is a complex
function of its argument, the behavior of the complex amplitude
A(r,z) is described by the parabolic equation obtained from the
wave equation (2) in the WKB approximation assuming that
the variations in the z direction are slower than those in radial
direction:
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To solve Eq. (6), we express A as

A = Ap(r,2)exp(—ikS), 7

where Ag and S are real functions of r and z (S being the eikonal of
the beam). Substituting Eq. (7) for A in Eq. (6) and separating the
real and imaginary parts, one can obtain
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Following Akhmanov et al. [11] and Sodha et al. [12,13], the
solution for E can be written as E=Aq(r,z)exp[ —ik(S+2z)], with
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where k; is the absorption coefficient given by ki=ke;i[2¢q
with k=wag)/2/c and B(z)=(1/f)(df/dz). The parameter f~! may
be interpreted as the radius of curvature of the beam and f is the
dimensionless beam-width parameter described by the differen-
tial equation
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where #=z[/R; is the dimensionless distance of propagation,
k;=kiRy is the normalized absorption coefficient and Ry =kr3
is the Rayleigh length. The absorption can be neglected in the
analysis when fé(w/c)Zk} dz < 1, this is of course consistent with
v <w [31]. Eq. (12) can be solved numerically with appropriate
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