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a b s t r a c t

Because of the merits of non-destruction, high speed, and high sensitivity, optical techniques have been

developed for experimental mechanics and optical measurement. In commercial optical systems, the

speed performance becomes more important and real-time systems are pursued. Among many

acceleration methods, using parallel computing hardware is proven effective. In this paper, the main

principles of parallel computing at an application level are introduced; the hardware platforms that

support parallel computing are compared; the applications of parallel computing in experimental

mechanics and optical measurement are reviewed. Parallel hardware platforms are seen to be useful for

the acceleration of various problems. When the computation is time-consuming or real-time

performance is required, hardware acceleration is a possible approach for consideration.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the past few decades, optical techniques have been developed
for experimental mechanics and optical measurement. Because of
the merits of non-destruction, high speed and high sensitivity, they
are applied to many industrial applications [1,2]. Although the
accuracy is usually most concerned in these techniques, high speed
is always desired. In commercial optical systems, the speed perfor-
mance becomes more important and real-time systems are pursued.
Many efforts have been put into the speedup of the computations in
experimental mechanics and optical measurement including devel-
oping faster algorithms and using parallel hardware [3]. Compared
with faster algorithms, parallel hardware is a more feasible approach
to boost the speed performance while maintaining the required
accuracy [3].

Nowadays the concept of parallel computing has permeated into
personal computers (PCs) by using general-purpose multicore
processors [4]. Although researchers have been working on auto-
matically adapting sequential programs for parallel PCs, it is
unfortunately very difficult, and will take at least several decades
according to [5]. On the contrary, parallel hardware is more mature
and ready for use. This paper reviews the works using parallel
hardware in experimental mechanics and optical measurement.

Main principles of parallel computing at an application level
and hardware platforms that support parallel computing are
introduced in Section 2. In Sections 3–5, the works using parallel
hardware in experimental mechanics and optical measurement

are reviewed. The discussions and conclusions are given in
Sections 6 and 7, respectively.

2. Parallel computing

2.1. Parallel methods

Parallel computing aims to solve a problem faster by dividing
the problem into a set of sub-problems which are simultaneously
executed by multiple independent computing units (nodes) [6]. The
commonly used parallelism methods consist of task parallelism,
pipeline parallelism, and data parallelism [7,8]. Most problems are
combinations of the above three parallelism methods.

� Task parallelism distributes tasks across different parallel
computing nodes. As shown in Fig. 1(a), tasks are implemented
as threads, and each thread is executed in a different node to
process the same or different data simultaneously.
� Pipeline parallelism is a particular case of task parallelism

where multiple tasks depend on each other and process
different data simultaneously. Illustrated in Fig. 1(b), three tasks
are executed by three different nodes. The execution time for
different tasks are denoted as t1, t2, and t3, respectively; and n is
the number of datasets. The total computation time is reduced
from ts¼nn(t1þt2þt3) to tp ¼ ðn�2Þnmaxðt1,t2,t3Þþmaxðt1,t2Þþ

maxðt2,t3Þþt1þt3. For example, if t1¼t2¼t3¼t, and n is large,
the computation time is reduced from ts¼3nt to tp¼(nþ2)
tEnt, and a speedup of 3 is achieved.
� Data parallelism distributes data across multiple parallel

nodes as shown in Fig. 1(c). The same task is executed in each
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of the parallel nodes. Data parallelism is especially useful for
pixel- and block-wise operations that can be very efficiently
parallelized when the number of parallel nodes is large.

2.2. Amdahl’s Law [9]

Since usually not all the parts of a given problem can be
parallelized, the efficiency of improvement using parallel com-
puting can be roughly estimated by Amdahl’s Law [9]. Suppose in
a problem, the execution time of the computations that can and
cannot be parallelized be tp and tu, respectively; the percentage
of the parallelizable parts be p¼tp/(tpþtu); and the amount
of improvement by parallel computing be n. The total
execution time is reduced from tpþtu to tp/nþtu, and the overall
speedup is,

s¼
1

ð1�pÞþp=n
: ð1Þ

Two extreme cases are considered. When p is very large and
approaching 1, sEn is obtained, which indicates that speedup
increases with the number of the nodes. This is denoted as an
embarrassingly parallel problem [5] that can be most efficiently
parallelized. When p is very small and approaching 0, sE1, which
shows that the problem is sequential and cannot be accelerated
by parallel computing. It should be noted that Amdahl’s Law only
addresses a theoretically predicted speedup. In practical cases, the
extra time introduced by the parallel computing should also be
taken into account.

2.3. Hardware platforms

During the past few decades, with the development of semi-
conductor techniques, the parallel platforms have also been
developed. Based on Flynn’s taxonomy [10,11], hardware systems
can be classified into four architectures: single-instruction-single-
data (SISD), single-instruction-multiple-data (SIMD), multiple-
instruction-single-data (MISD), and multiple-instruction-multi-
ple-data (MIMD). SISD is equivalent to the sequential hardware
architecture; SIMD is for data parallelism; MISD is rarely used;
MIMD is for task parallelism and is the most common type
of parallel platform. It should be noted that although MIMD
targets at task-parallel problems, data-parallel problems can
be accelerated by an MIMD hardware with same copy of
program executed in each unit. However, this method is not
efficient when compared with using SIMD hardware platforms.
Many hardware platforms are hybrids of both SIMD and MIMD
architectures.

2.3.1. MIMD platforms

The common parallel hardware based on MIMD consists of
computer clusters, shared memory multiprocessors, general-pur-
pose multicore processors, and pipeline processors. The grid
computing [12] and cloud computing [13] are also common
parallel hardware platforms but not given below because they
are for grand challenge problems [14] such as protein folding
financial modeling and climate modeling.

Fig. 1. The mechanism of parallelism methods. (a) Task parallelism; (b) pipeline parallelism and (c) data parallelism.
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