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A B S T R A C T

Background: Recent advances in multilevel modeling allow for modeling non-hierarchical levels (e.g., youth in
non-nested schools and neighborhoods) using cross-classified multilevel models (CCMM). Current practice is to
cluster samples from one context (e.g., schools) and utilize the observations however they are distributed from
the second context (e.g., neighborhoods). However, it is unknown whether an uneven distribution of sample size
across these contexts leads to incorrect estimates of random effects in CCMMs.
Methods: Using the school and neighborhood data structure in Add Health, we examined the effect of neigh-
borhood sample size imbalance on the estimation of variance parameters in models predicting BMI. We dif-
ferentially assigned students from a given school to neighborhoods within that school's catchment area using
three scenarios of (im)balance. 1000 random datasets were simulated for each of five combinations of school-
and neighborhood-level variance and imbalance scenarios, for a total of 15,000 simulated data sets. For each
simulation, we calculated 95% CIs for the variance parameters to determine whether the true simulated variance
fell within the interval.
Results: Across all simulations, the “true” school and neighborhood variance parameters were estimated 93–96%
of the time. Only 5% of models failed to capture neighborhood variance; 6% failed to capture school variance.
Conclusions: These results suggest that there is no systematic bias in the ability of CCMM to capture the true
variance parameters regardless of the distribution of students across neighborhoods. Ongoing efforts to use
CCMM are warranted and can proceed without concern for the sample imbalance across contexts.

1. Introduction

Multilevel modeling (MLM) has become a staple of social science
and public health research, allowing researchers to examine macro-
level contextual effects across multiple settings, including students
within schools (Munoz and Chang, 2007; Kim and McCarthy, 2006;
Sellstrom and Bremberg, 2006), residents within neighborhoods
(Tendulkar et al., 2010; Pickett and Pearl, 2001; Leventhal and Brooks-
Gunn, 2000), and patients within hospitals (Rice and Alastair 1996). In
MLM, both fixed and random effects account for the clustering of in-
dividuals within context, while also generating effect estimates for the
contexts themselves (Diez-Roux, 2000). For more than two decades,
studies using MLM have demonstrated that contexts are important

determinants of health and behavior, even after accounting for in-
dividual characteristics and composition.

Recently, MLM researchers have begun to recognize the importance
of considering multiple contexts simultaneously. For instance, there is
growing interest in cross-classified multilevel modeling (CCMM)
(Goldstein, 1994; Rabash and Browne, 2001), which allows researchers
to examine instances when individuals are nested in non-hierarchical
contexts, such as when students attending the same school live in dif-
ferent neighborhoods and conversely when students from the same
neighborhood attend different schools. To date, CCMM has been used to
examine the impact of schools and neighborhoods on a variety of health
and behavioral outcomes (Dunn et al., 2015a, 2016, 2017, 2015b;
Townsend et al., 2012; De Clercq et al., 2014; Evans et al., 2016), as
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well as contextual effects of classrooms and teachers on educational
outcomes (Heck, 2009; Kim et al., 2010). A major advantage of CCMM
relative to MLM is that it enables researchers to avoid the “omitted
context bias”, wherein variance in a random effects model is mis-
attributed from the missing context to the included context, as the in-
cluded context “soaks-up” the effect of the missing context (Dunn et al.,
2015b; Evans et al., 2016).

Sample size requirements for MLM are well established (Dedrick
et al., 2009; McNeish and Stapleton, 2014). To generate unbiased es-
timates of random effects variance parameters, methodologists re-
commend between 5 and 20 lower level units (e.g., students) as a
minimum for each higher level unit (e.g., school) (McNeish and
Stapleton, 2014). Including some schools with a smaller sample size in
the data set is not problematic, however, because estimates for contexts
with small sample size are automatically down-weighted in MLM esti-
mation. Thus, most schools in the sample would need a minimum of
5–10 students to provide a reasonable estimate of the school-level
variance. However, similar guidelines are not yet available for CCMM,
raising questions about the minimum sample size required per unit of
analysis in the CCMM setting.

Further, there is uncertainty about whether random effect estimates
are sensitive to the sampling strategy and the potential imbalance of
sample size across units of analysis. Many researchers conducting
CCMM studies use data drawn from samples where only one context
was originally intended to be studied. For instance, school-based re-
searchers intentionally sample students by school, ignoring the dis-
tribution of students across neighborhoods. Because the dataset con-
tained information about both school features and neighborhood of
residence, researchers could fit a CCMM to estimate both school and
neighborhood-level random effects – even though neighborhoods were
not the primary sampling unit. As a result, the distribution of the
sample across neighborhood catchment areas may be uneven due to
schools being the primary sampling unit, potentially biasing estimates
of neighborhood-level effects. Small and imbalanced neighborhood
sizes could result in higher variability and imprecise estimates for
random effects and possible bias leading to inaccurate conclusions re-
garding contextual effects. As CCMM becomes more popular with re-
searchers encountering more non-nested data structures – particularly
in the case of group randomized control trials – it is essential to de-
termine whether estimates of contextual-level effects are biased when
the sample sizes are unevenly distributed across the two contexts stu-
died. If contextual effects are biased, it is also important to describe the
direction of that bias, whether toward or away from the null.

The current study aimed to address these questions by performing a
series of simulation analyses based on data from the National
Longitudinal Study of Adolescent to Adult Health (Add Health) (Harris
et al., 2009a, 2009b), one of the largest nationally representative sur-
veys in the U.S (Harris et al., 2015). Our goal was to determine the
extent to which a sample can be distributed unevenly across one higher-
level context before random effects variance estimates become biased.
Add Health was an ideal empirical dataset in which to ground these
simulations because it is widely used in public health and has already
linked contextual measures of schools and neighborhoods to health and
behavior. Further, it intentionally sampled from one context (i.e.,
schools were the primary sampling unit) and the sample was distributed
unevenly across a second context (i.e., neighborhoods). Additionally,
because Add Health was drawn to be nationally representative, the
distribution of students across schools and neighborhoods is a realistic
sample of school catchment areas within the U.S. While schools in the
sample each had a reasonable sample size, the neighborhoods those
students came from were not always well represented, with many
having only a single respondent. Furthermore, because of the rich in-
formation contextual information available, CCMMs are increasingly
being used in Add Health papers despite unanswered questions of their
validity prompted by the small neighborhood sample sizes. By an-
choring these simulations to a realistic example and commonly used

dataset, we ensure that our examination of CCMM validity is conducted
within a relevant parameter space with practical implications for future
Add Health studies. Body mass index (BMI) was chosen as the outcome
for this simulation because of its clarity for analysis purposes (measured
continuously and has an approximately Gaussian distribution) as well
as its salience as a public health issue (Baskin et al., 2005; Lawrence,
2004).

2. Methods

Empirical data from the Wave 1 in-home sample of Add Health was
used as a basis for the school and neighborhood data structure in our
simulations. There were 20085 students who attended 132 unique
schools and lived in 2410 unique neighborhoods. The school and
neighborhood data structure in the Add Health is cross-classified be-
cause students attending the same school often resided in different
neighborhoods and students living in the same neighborhood attended
different schools. Specifically, there were 2979 unique combinations of
school and neighborhood, with a median of 1 school per neighborhood
(range 1–3) and a median of 14 neighborhoods per school (range
1–234). Thus, the data were not purely hierarchical, but rather schools
in particular drew students from many neighborhoods.

Overall, school sizes in Add Health ranged from 20 to 1720 with
median 126.5 (interquartile range 85–174.5). Neighborhood sizes
ranged from 1 to 276 (median 2; interquartile range 1–5); 45% of
neighborhoods had only a single student while only 8% had 25 or more.
These values indicate a wide distribution in neighborhood sizes with
most falling in the lower range. While Add Health schools would appear
to have sufficient sample sizes, at least according to the rules for hier-
archical MLM, it was unclear whether this highly imbalanced neigh-
borhood design affects random effects variance estimates for neigh-
borhoods in CCMM.

2.1. Assignment of students to neighborhoods for the simulation
(determining balance)

To remain consistent with the existing cross-classified data struc-
ture, we maintained the number of students nested within each school
(range 20–1720; mean 152; median 126), as well as the number of
neighborhoods feeding into each school (range 1–234). With the
structure defined, we sorted students into neighborhoods for three
different levels of sample size balance across neighborhoods: perfectly
balanced, mildly imbalanced, and very imbalanced.

For the perfectly balanced scenario, the number of students within
each school was divided evenly across the neighborhoods sending stu-
dents to that school. Due to rounding, some schools had too many or too
few students; this was addressed by randomly subtracting or adding
from neighborhoods so that the number of students in each school was
consistent with the empirical data, each neighborhood still had at least
one student, and as close to perfect balance as possible was achieved.

For both imbalanced scenarios, we utilized a geometric distribution
to assign students to neighborhoods given the number of neighborhoods
per school. The probability of assignment to a given neighborhood k
given the initial proportion p, was calculated as:

= = −
−P X k p p( ) (1 )k 1 (1)

where p=initial proportion (probability of assignment to first neigh-
borhood) and k=given neighborhood sending students to a specific
school. P was set at 0.25 for the mildly imbalanced and 0.7 for the
imbalanced scenario, meaning that the first neighborhood for each
school was assigned 25% of students and 70% of students, respectively.
Fig. 1 illustrates the assignment of students to neighborhoods under the
balance scenarios for a hypothetical school with 60 students from 12
neighborhoods.

In practice, under both the mildly imbalanced and very imbalanced
scenarios this resulted in some neighborhoods with zero students
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