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a b s t r a c t

Climate change will likely have impacts on disease vector distribution. Posing a significant health threat
in the 21st century, risk of tick-borne diseases may increase with higher annual mean temperatures and
changes in precipitation. We modeled the current and future potential distribution of the Ixodes ricinus
tick species in Europe. The Genetic Algorithm for Rule-set Prediction (GARP) was utilized to predict
potential distributions of I. ricinus based on current (1990–2010 averages) and future (2040–2060
averages) environmental variables. A ten model best subset was created out of a possible 200 models
based on omission and commission criteria. Our results show that under the A2 climate change scenario
the potential habitat range for the I. ricinus tick in Europe will expand into higher elevations and
latitudes (e.g., Scandinavia, the Baltics, and Belarus), while contracting in other areas (e.g., Alps,
Pyrenees, interior Italy, and northwestern Poland). Overall, a potential habitat expansion of 3.8% in all
of Europe is possible. Our results may be used to inform climate change adaptation efforts in Europe.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Climate change has substantial impacts on human health
(Costello et al., 2011; Frumkin et al., 2008; Haines et al., 2006;
McMichael and Lindgren, 2011; Patz et al., 2005). Impacts on the
European continent will likely include a higher frequency of
extreme weather events, prolonged heat waves, changes in pre-
cipitation, reduction in biodiversity, and changes in the spatial
distribution of various infectious diseases (Bittner et al., 2014;
Confalonieri et al., 2007; Fischer and Schär, 2010; Nikulin et al.,
2011; Parks et al., 2010; Semenza et al., 2012; Thuiller et al., 2005).
In addition to a potential increase in food-borne infections with
warmer mean temperatures (Thomas et al., 2012), the distribution
and life cycle changes of rodents, arthropods, and other disease
vectors present a major public health risk to Europe (Ciscar et al.,
2011; Semenza and Menne, 2009; Semenza et al., 2012). Vector-
borne diseases are transmitted by ticks (e.g., tick-borne encepha-
litis (TBE), Lyme borreliosis), mosquitoes (e.g., West Nile Virus,
malaria, dengue), sandflies (e.g., leishmaniasis), rodents (e.g.,
plague, hantavirus), and other arthropods. While risks to Europe
from emerging tropical diseases under a changing climate should

not be dismissed, morbidity from tick-borne diseases is already a
public health issue in Europe that may be exacerbated by climatic
change (Jaenson and Lindgren, 2011; Massad et al., 2011; Semenza
et al., 2012). In Europe's temperate climate, ticks are the primary
disease vector (Capelli et al., 2012a), and assessing future pertur-
bations in tick distribution under a changing climate is an
imperative component of climate change adaptation and public
health preparedness (Semenza et al., 2012).

1.1. Climate change effects on tick-borne diseases

Already endemic in northern and central Europe, ticks of the
Ixodes ricinus (subsequently called I. ricinus) family act as both a
reservoir and vector for lyme borreliosis and TBE pathogens
(Jaenson and Lindgren, 2011; Jaenson et al., 2012; Lindquist and
Vapalahti, 2008; Süss, 2011). Climate change affects vector-borne
disease distribution and incidence through various paths (Gage
et al., 2008; Kovats et al., 2001; Mills et al., 2010; Semenza et al.,
2012). First, arthropod vectors such as ticks are ectothermic (cold-
blooded) and therefore sensitive to changes in temperature
(European Center for Disease Prevention and Control, 2012). Sec-
ondly, precipitation and humidity additionally affect reproduction
and egg development, vector development, population density as
well as biting activity (Gage et al., 2008; Harrus and Baneth, 2005;
Knap et al., 2009). Pathogen load, pathogen development, abun-
dance of host species and human behavior are also affected by
climate factors (Kovats et al., 2001; Massad et al., 2011; Semenza
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and Menne, 2009; Zhang et al., 2008). I. ricinus spends all of its life
stages outside and thus depends on a suitable combination of
climate variables making them particularly vulnerable to changes in
climate (Estrada-Peña, 2008; Gage et al., 2008). Milder winters and
longer growing seasons could expand climate-sensitive vector
ranges to higher altitudes and latitudes (Süss, 2011), while a hotter
and drier climate in southern European countries might lead to a
decrease in tick abundance in these regions (Semenza and Menne,
2009). Temperate environments have also been described as
particularly at risk from global warming as low temperatures
usually limit vector survival (Sutherst, 2004). European countries
with lower mean temperatures are expected to experience an
increase in climate-sensitive disease vectors in the near future
(Semenza et al., 2012).

In recent years, the public health research community has
become increasingly interested in future impacts of climate
change on human health as shown by a larger output of research
articles (Hosking and Campbell-Lendrum, 2012). Whereas future
distribution of ticks in individual European countries has been
modeled (Gray et al., 2009), transfer of these results of spatial
epidemiological modeling into national adaptation policy has been
slow. Limited information exists on changes in tick niche distribu-
tion on the European continent overall, a gap which this study
attempts to fill. Based on our results of modeling current and
prospective I. ricinus tick distribution in Europe, we discuss the
potential implementation of our methods into European climate
change adaptation strategies.

2. Materials and methods

2.1. Data sources

A total of 2097 georeferenced localities (presence-only) for I. ricinus
were obtained from the Global Biodiversity Information Facility (2013).
Most tick localities were recorded using handheld GPS, while coordi-
nates for older records were documented using local maps and
distance and azimuth (direction) from the nearest town. The majority
of ticks (�97%) were collected from their observed presence on a host
(e.g., human, dog), then mailed to a public health station or museum.
The remaining ticks were observed and not collected. Absence data
were not needed for the chosen method of modeling. More than one
species was recorded at multiple locations, providing a rudimentary
level of abundance. However, abundance was also not necessary for
modeling and only one I. ricinus tick was needed per geographically
unique location. GBIF is a global inventory of freely available species
locality data that combines multiple datasets into one. Only data from
European countries were used in this study and the original data
sources include the Ohio State University Acarology Collection, Berlin
Museum of Natural History, Illinois Natural History Survey, National
Natural History Museum of Luxembourg, United Kingdom National
Biodiversity Network, Danish Biodiversity Information Facility, Swed-
ish Species Data Bank, Natural History Museum – University of Oslo,
and Norwegian Species Data Bank.

The current distribution model utilized baseline climate data
constructed of averages over the time period 1990–2010 and the
future distribution model utilized the CSIRO SRES A2 emissions
scenario for the time period 2040–2060. The A2 scenario was
originally created by the CSIRO Marine and Atmospheric Research
Laboratories Information Network in Australia (Collier et al., 2007;
Gordon et al., 2002). Data were obtained from the Consultative
Group on International Agricultural Research (CGIAR) Research
Program on Climate Change, Agriculture and Food Security (CCAFS)
global circulation model (GCM) data portal (Consultative Group on
International Agricultural Research (CGIAR), 2013). The A2 emissions
scenario uses global economic and industrial trend predictions to

conceptualize a future climate influenced by a heterogeneous world
where fertility patterns converge slowly across regions resulting in
increasing population, while economic growth and technological
change are regionally fragmented. Because the impact of these trends
is expected to exacerbate current climate change tendencies, the A2
scenario is considered a “high” emissions scenario. Both the baseline
climate data and A2 scenario climate data were processed and
downscaled through the MarkSim pattern scaling technique, which
groups over 9200 global weather stations into climate clusters based
on monthly average rainfall and temperature figures from each
station (Jones and Thornton, 2013).

Bioclimatic grids were created through the manipulation of
monthly measures of solar radiation, precipitation, and temperature
and included annual mean solar radiation, iso-thermality, annual
total precipitation, precipitation of wettest quarter, and precipitation
of driest quarter at a resolution of 50 (�8 km) (Hijmans et al., 2005).
Soil type was also used as a variable for modeling because of its
importance in tick habitat suitability (Guerra et al., 2002). Soil data
were obtained from the Harmonized World Soil Database (HWSD),
which utilized the Soil and Terrain Database (SOTER) for Europe. Soil
data were available at a resolution of 30″ (�1 km). All variables were
resampled to a resolution of 8 km2 (or 0.011), and clipped to the
boundary of Europe (excluding western Russia).

2.2. The GARP modeling approach

The Genetic Algorithm for Rule-set Prediction (GARP) was
selected to create an ecological niche model (ENM) for I. ricinus.
The GARP model was developed using the Desktop GARP version
1.1.3 open source software application (Scachetti-Pereira and
Stockwell, 2002). GARP is a presence-only modeling tool that
analyzes the relationship between locality data and the para-
meters of environmental variables in the same location through an
iterative process of training and testing (Stockwell and Peters,
1999). A total of 50 rules are created from four main rule types
(atomic, range, negated range, and logit rules) for each model run
in a pattern matching process that finds non-random relationships
between locality data and environmental parameters. Once a rule-
set (i.e., the combination of all 50 rules in each model run) is
created, then the relationship is applied to other areas of the
landscape that have similar environmental parameters describing
either presence or absence of the species. Validation occurs both
internally and externally through a process of data splitting that is
user-defined.

The GARP modeling approach is stochastic, or random, and
consequently produces different outputs with each model run.
Because of the variance between each model run output, it is
important to produce multiple runs and utilize the best-subset
technique of selecting the 10 best models that meet certain optimi-
zation parameters. Omission and commission thresholds are defined
by the user to obtain a set of models that find a balance between
sensitivity (absence of omission error) and specificity (absence of
commission error) (Anderson et al., 2003). The resulting GARP output
is a collection of grids that describe presence and absence of the
species across the study area. These grids can be input in a
Geographic Information System (GIS) and summated to find areas
where higher and lower model agreement occurs. Presence or
absence classification is more certain with increasing model agree-
ment (Ron, 2005).

2.3. Application of GARP in this study

For this study, a total of 904 I. ricinus locations were found to be
spatially unique and thus available for evaluation. Locations were
spatially unique when they were not found in the same eight
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