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Abstract

A sensor array comprising of three chemical gas sensors was evaluated to predict the concentrations of O2, CO, and CO2 in a gas stream
with the sensors at 600 ◦C. The data analysis involved a non-linear multivariate regression method (kernel ridge regression, KRR) along with a
searching algorithm to predict gas concentrations. The sensors in the array included a resistance-based 2% CuO/10% La2O3/TiO2 sensor, and two
potentiometric sensors, including a yttria stabilized zirconia (YSZ) sensor with a metal/metal oxide internal reference electrode, and a lithium
phosphate-based sensor. In addition, the possibility of using the KRR algorithm to predict gas concentrations beyond the training data is explored.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Rapid detection and quantification of chemical species are
important in optimization of industrial processes. For example,
optimization of combustion processes can lead to significant
energy savings, as well as minimization of emissions across
power, chemical, steel and other manufacturing industries.
Rapid detection and quantification of gases, such as CO, O2
and CO2 at high temperatures with the opportunity for feed-
back control can revolutionize combustion processes [1,2]. In
addition, health, safety and national security needs also require
sensor methodology to identify chemical species [3].

Most sensors used for detection of chemical species exploit
optical or electrochemical methods. Electrochemical gas sensors
have several advantages over conventional analytical instru-
ments, such as infrared spectroscopy and chromatography,
because of possible miniaturization, low acquisition and main-
tenance costs.
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Traditionally, chemical sensing methods primarily rely on the
inherent selectivity of the sensor to retrieve quantitative informa-
tion or identify the presence or absence of analytes. However,
in many cases, sensing elements cannot achieve the required
selectivity. A strategy has been to couple an array of partially
selective sensors to overcome challenges such as non-selectivity,
non-linearity and non-stability (either known or projected sensor
signal drifts) [4–6].

In most cases, statistical and signal processing techniques
are necessary to decouple the mutual dependence between indi-
vidual sensors. Essentially, these techniques can be divided
into two categories: those for qualitative information acqui-
sition and those for quantitative data extraction. The most
popular representatives of the former are pattern recognition
and artificial neural network (ANN) based approaches, while
multi-component analysis and regression techniques fall into
the second category.

Chemometric methods have been widely adopted for sensor
array analysis. Jurs et al. [7] have provided a comprehensive
review on computational methods for interpreting data from a
chemical sensor array. A major pattern recognition approach is
principle component analysis, PCA in short, and its extensions.
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Pardo et al. [8] reported employing PCA in electronic nose (EN)
applications to differentiate diverse food products with satisfac-
tory classification results. In principle, PCA reduces the raw
data matrix into its corresponding eigenvectors and eigenval-
ues [7]. The amount of variance represented by eigenvectors is
ranked according to the magnitudes of associated eigenvalues
[8,9]. When applied as a classifier of gas mixtures, PCA ensures
that properties of a gas mixture in most scenarios can be rep-
resented by a few principal components (PC), which contribute
most of the variance. Therefore, these PCs can be used as indi-
cators to identify the types or classes of the mixture under test.
PCA is most effective in classification applications, especially in
cases where data can be represented as clusters. However, PCA
is not able to quantify the composition of a gas mixture.

On the other hand, multi-component analysis and regres-
sion methods are commonly regarded as traditional quantitative
methods for sensor applications. For example, combining PCA
with regression techniques overcomes PCAs inability of quanti-
tative prediction and leads to a series of other closely related
techniques, including principal component regression (PCR)
and partial least squares (PLS) [10]. Although these techniques
were originally developed as linear regression methods, their
non-linear variants do exist for more general applications. How-
ever, a primary drawback of PLS/PCR is that they tend to be
overly optimistic when the data are characterized by more mea-
sured variables than observations. In addition, they are most
successful when sensor responses are known to be linear. Cao
and Zhang [11] used linear regression equations combined with
the least square method to determine explosive gases using a
sensor array, with relatively large errors.

Another important approach is computational neural net-
works. In its simplistic form of a three-layer structure, the input
layer corresponds to the individual sensors in an array. Each
neuron cell represents a single sensor. The neurons in the out-
put layer are related to the different classes in classification
problems, or distinct permutations of the gas concentrations
in quantification problems [7]. In the hidden layer, a weighted
sum of the inputs and bias terms are combined and passed to
a transfer function, for example, SIGMOD function, and then
the results are delivered to the output layer. The number of
neurons in the output layer depends on the number of classi-
fications in many applications. Therefore, quantification using
neural networks needs a large amount of cells, and it increases
computational complexity and requires training data sets. More
advanced neural networks, such as multilayer perceptron (MLP)
and self-organizing maps can be used as a preprocessing unit to
alleviate these difficulties [7].

Our interest has been in the development of high temper-
ature electrochemical gas sensors, aimed towards combustion
optimization, as well as fire detection. The research strategy
has focused on developing selective sensors for O2, CO2, NOx,
CO and hydrocarbons [12–17]. Even with careful choice of
electrodes, electrolytes and catalysts, cross-sensitivity to some
gases, interference from humidity and temperature effects are
observed. We have reported on a non-linear regression method
(kernel ridge regression, KRR) to extract quantitative informa-
tion for a two-sensor array for measuring CO and O2 in harsh

environments [18,19]. Kernel ridge regression (KRR) has the
major advantage of obtaining the so-called kernel analytically
and subsequently allows the number of basis functions to be vir-
tually infinite. In addition, the required computational overhead
and training data are decreased significantly. The basic idea of
KRR is to model the multiple gas response functions of the sen-
sors with the “kernel” regression model, a name derived from a
mainstream supervised machine learning technique.

The goal of the present study was to expand KRR technique
from the two-sensor array to three-sensor array and extract infor-
mation regarding the concentrations of CO, CO2 and O2 from a
three-sensor array. The sensors examined are a resistance-based
anatase-based sensor (with La2O3 and CuO, labeled sensor I),
and a potentiometric zirconia sensor (sensor II) and a lithium
phosphate-electrolyte based sensor (sensor III). The signals from
all three sensors were recorded in varying CO (250–600 ppm),
O2 (2–10%) and CO2 (2–10%) at 600 ◦C and the data were
analyzed by the KRR method. Improvements to the data anal-
ysis include development of an adaptive searching algorithm
to retrieve gas concentrations with improved times and preci-
sion. In addition, the potential of the KRR method to predict
concentrations beyond the training data set is evaluated with a
two-sensor array.

2. Experimental section

2.1. TiO2 sensor (sensor I)

Sensor I was made by mechanical mixing and heat treat-
ment of commercial metal oxide powders. Commercial anatase
(99.9%, Aldrich), La2O3 (Aldrich) and CuO (Aldrich) were
weighed to achieve 2 wt% CuO–10 wt% La2O3–anatase, ball-
milled and calcined at 800 ◦C for 6 h. This procedure has been
outlined previously [20]. Alumina substrates with screen-printed
gold interdigitated electrodes separated by 250 �m were used.

2.2. Pd/PdO internal reference stabilized ZrO2 sensor
preparation (sensor II)

This sensor was constructed as outlined in a submit-
ted manuscript [21]. The electrolyte, ring and bottom wafer
were cut from pre-formed and densified rods/tubes of
3 mol% yttria-stabilized tetragonal zirconia polycrystals (YTZP,
davg < 0.4 �m) that were purchased from Custom Technical
Ceramics Inc. (Arvada, CO). The 8 mol% cubic YSZ spacers
(davg ∼ 8 �m) were cut from a rod that was also purchased from
Custom Technical Ceramics Inc. The YTZP green tapes were
laser cut from sheets into rings the dimensions of which matched
that of the YTZP ring (Nextech, Columbus, OH). The Pt wire
to the inner reference electrode was sandwiched between two
pieces of YTZP green tape in order to densify around the wire
during joining. The internal reference was Pd/PdO obtained
from Alfa. The sensor was compressed at 0.012 mm/min under
a 1000 N full-scale load at 1287 ◦C. The resultant longitudinal
compression was 263 �m. During the heating cycle, the load on
the sample was balanced as not to exceed 5 N. Upon reaching
the target temperature the system was left under a 5 N load for
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