
Parallel computing for fringe pattern processing: A multicore CPU approach
in MATLABs environment

Wenjing Gao, Qian Kemao �, Haixia Wang, Feng Lin, Hock Soon Seah

School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore

a r t i c l e i n f o

Article history:

Received 5 March 2009

Received in revised form

25 April 2009

Accepted 27 April 2009
Available online 6 June 2009

Keywords:

Parallel computing

Fringe pattern analysis

MATLABs parallel computing toolbox

Windowed Fourier transform

a b s t r a c t

In the process of measurements such as optical interferometry and fringe projection, an important stage

is fringe pattern analysis. Many advanced fringe analysis algorithms have been proposed including

regularized phase tracking (RPT), partial differential equation based methods, wavelet transform,

Wigner–Ville distribution, and windowed Fourier transform. However, most of those algorithms are

computationally expensive. MATLABs is a general algorithm development environment with powerful

image processing and other supporting toolboxes. It is also commonly used in photomechanical data

analysis. With rapid development of multicore CPU technique, using multicore computer and MATLABs

is an intuitive and simple way to speed up the algorithms for fringe pattern analysis. The paper

introduces two acceleration approaches for fringe pattern processing. The first approach is task

parallelism using multicore computer and MATLABs parallel computing toolbox. Since some algorithms

are embarrassing problems, our first approach makes use of this characteristic to parallelize these

algorithms. For this approach, parallelized windowed Fourier filtering (WFF) algorithm serves as an

example to show how parallel computing toolbox accelerates the algorithm. Second, data parallelism

using multicore computer and MATLABs parallel computing toolbox is proposed. A high level parallel

wrapping structure is designed, which can be used for speeding up any local processing algorithms.

WFF, windowed Fourier ridges (WFR), and median filter are used as examples to illustrate the speedup.

At last, the results show that the parallel versions of former sequential algorithm with simple

modifications achieve the speedup up to 6.6 times.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In the process of measurements such as optical interferometry
and fringe projection, an important stage is fringe pattern
analysis. Phase-shifting algorithms and Fourier transform are
traditional fringe analysis algorithms [1,2]. Recently many
advanced fringe processing algorithms emerge including regular-
ized phase tracking (RPT) [3], partial differential equation (PDE)-
based methods [4], wavelet transform [5,6], Wigner–Ville dis-
tribution [7], and windowed Fourier transform (WFT) [8], to name
a few. These algorithms can suppress noise presented in fringe
patterns or extract the phase information from intensity fringe
patterns or do both. However, most of these algorithms are
computationally expensive. For instance, to process a 256�256
gray level fringe pattern, RPT method using 1.5 GHz Intel Pentium-
M personal computer (PC) takes 1–2 min [3]; PDE-based methods
by Pentium-IV 3.6, 3.59 GHz 1 G RAM CPU will generally take
1–5 min [4]; and WFT-based methods by Pentium-IV 3.2 GHz

desktop costs 45 s–3 min [8]. These advanced algorithms should
be accelerated in order to gain wider applications.

Parallel computing is a form of computation that uses multiple
computer resources simultaneously to accelerate processing the
problem [9]. It is now widely used in areas such as medical image
processing or weather forecasting, which are computationally
time consuming. In fringe pattern processing, parallel computing
technique has also been applied utilizing cluster computers to
accelerate temporal fringe pattern processing with speedup of 1.6
times [10].

Since IBM released the first dual-core processor in 2001,
multicore computer has been the mainstream computing model
in computer market nowadays. Recently, Intel even released 80
cores processor called Teraflops Research Chip [11], which can
overwhelm a supercomputer in the aspect of floating point
operations per second. With the support of corresponding soft-
ware, multicore CPU computer will challenge the current popular
acceleration scheme using graphics processing unit (GPU) or field
programmable gate array (FPGA) [12]. MATLABs [13] is among
the first batch of software that supports programming multicore
computer. It is a general algorithm development environment
with powerful image processing and other supporting toolboxes.

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/optlaseng

Optics and Lasers in Engineering

0143-8166/$ - see front matter & 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.optlaseng.2009.04.018

� Corresponding author.

E-mail address: mkmqian@ntu.edu.sg (Q. Kemao).

Optics and Lasers in Engineering 47 (2009) 1286–1292

www.sciencedirect.com/science/journal/olen
www.elsevier.com/locate/optlaseng
dx.doi.org/10.1016/j.optlaseng.2009.04.018
mailto:mkmqian@ntu.edu.sg


As a high level programming language, the code of MATLABs is
concise, portable and easy to maintain. Moreover, MATLABs is
also commonly used in photomechanical data analysis [14]. Using
parallel computing toolbox [15] of MATLABs based on multicore
CPU is an intuitive and simple way to speed up the fringe pattern
analysis. Based on the above reasons, this paper presents two
approaches for accelerating fringe pattern processing. The first
approach is task parallelism using multicore computer and
MATLABs parallel computing toolbox. Since some algorithms
are embarrassing problems, our first approach makes use of this
characteristic to parallelize these algorithms. For this approach,
parallel windowed Fourier filtering (WFF) algorithm serves as an
example to show how parallel computing toolbox accelerates the
algorithm. Second, data parallelism using multicore computer and
MATLABs parallel computing toolbox is proposed. A high level
parallel wrapping structure is designed, which can be used for
speeding up any local processing algorithms. WFF, windowed
Fourier ridges (WFR), and median filter [16] are used as examples
to illustrate the speedup. The rest of the paper is organized as
follows. Basic principles about parallel computing and MATLABs

parallel computing toolbox are introduced in Section 2; Using
MATLABs parallel computing toolbox and multicore CPU techni-
que to accelerate algorithms is presented in Section 3; The results
show that the parallel versions of former sequential algorithms
with simple modifications achieve the speedup up to 6.6 times,
which is given in Section 4. The paper is concluded in Section 5. It
is noted that ‘multicore computer’ in the paper is used to refer to
multicore CPU-based personal computer.

2. Parallel computing and MATLABs parallel computing toolbox

In this section, we introduce the principles of parallel
computing in Section 2.1, and MATLABs parallel computing
toolbox in Section 2.2.

2.1. Parallel computing

Parallel computing is a form of computation that solves a
problem by simultaneously using multiple computer resources.
Hardware supporting parallel computing consists of multicore
computer [17], symmetric multiprocessor [18], distributed com-
puter such as cluster workstations [9], and specialized parallel
processors such as FPGA [12], GPU [12], and application-specific
integrated circuit (AISC) [19]. With the development of the
supporting parallel hardware, especially the development of
multicore computer, parallel programming architecture becomes
more important than before.

Most common ways for parallelism include task parallelism,
pipeline parallelism, and data parallelism [20,21]. Task paralle-
lism, also known as functional parallelism, is a parallel develop-
ment structure that independent calculation parts of a method
can be performed in different processors simultaneously. In the
case of pipeline parallelism, the problem is divided into a series of
tasks. Every task will be executed by a separate process or
processor. Each parallel process is usually referred to as a pipeline
stage [9]. The output of one pipeline stage serves as the input of
another so that at any given time each pipeline stage is working
on a different dataset. Data parallelism mainly focuses on the
same process being applied to different parts of a dataset
simultaneously. That is to say, similar operation sequences or
functions are executed in parallel on elements of a large data
structure. In addition, given enough parallel resources, the
computation time of data parallelism structure is usually
independent of the problem size. One of previously mentioned

parallelism methods or a combination of them may be used in
parallelism applications.

In the aspect of parallel degree, an application can be fine-
grained, coarse-grained, and embarrassing parallelism. Fine-
grained applications are those whose subtasks are relatively small
and communicate frequently. Parallel applications exhibit coarse-
grained parallelism if their subtasks communicate infrequently
after larger amounts of computation. Embarrassing parallelism
applications can be naturally divided into completely indepen-
dent parts with no or small amount of communication. WFF is
such embarrassing problem because processing an image with a
specific frequency is unrelated to that with another frequency,
which will be further discussed in Section 3.

The only factor that affects parallelizing performance from
linear speedup [22] is overhead. The overhead covers the
following three aspects: (i) communication time for interactions
between processors; (ii) extra computations in the parallelized
algorithm but not required in counterpart sequential version; and
(iii) some parts of algorithm cannot be parallelized, causing the
load imbalance among processors.

2.2. Introduction to MATLABs parallel computing toolbox

Parallel computing toolbox provides a high-level structure for
solving computationally expensive problems over MATLABs and
Simulinks. The toolbox makes use of multicore or bus connected
computers to share the computation load by parallel processing.
First released in September 2006 as a part of MATLABs 2006b,
parallel computing toolbox has been developed to version 4.1
supporting up to eight workers or worker sessions [23] locally on
a multicore desktop. Furthermore, together with MATLABs

distributed computing server, parallel toolbox also supports
cluster-based applications that use any scheduler or any number
of workers on a computer cluster. The algorithms can be
parallelized in MATLABs without additional coding for specific
hardware and network architectures. Consequently, converting
former sequential MATLABs code to parallel applications only
needs a few modifications of code and no programming in a low-
level communication driver. These features of parallel computing
toolbox enable scientists and engineers to focus on their
algorithm design while enjoy the benefits of speedup using
multicore computer or a cluster of workstations.

Parallel computing toolbox usually supports task-parallel and
data-parallel application development. In general, task-parallel in
parallel computing toolbox is restricted to embarrassing problems
in which ‘iterations’ of a parallel loop have no dependency or
communication among them. By simply replacing ‘for’ in former
MATLABs code by ‘parfor’, parallel computing toolbox automati-
cally manages data and code transfer between the MATLABs

client session and the worker sessions. If parallel computing
toolbox fails to detect the presence of the worker sessions, it
automatically reverts to sequential execution. Data-parallel
application development in MATLABs parallel computing toolbox
mainly targets at the algorithms that require large amount of
dataset to be processed. Parallel computing toolbox provides
distributed arrays, parallel functions and uses ‘spmd’ keyword for
parallel execution on several worker sessions. When the dataset is
divided into smaller pieces and sent to different cores, some non-
edge pixels in the original dataset become edges pixels of these
smaller datasets. Consequently, edge effects will be introduced. As
the data-parallel commands provided in MATLABs parallel
computing toolbox do not provide edge consistency function, it
will not be used in this paper.

Fig. 1 shows the structure of parallel computing toolbox as a
superstructure over other toolboxes and MATLABs environment.

ARTICLE IN PRESS

W. Gao et al. / Optics and Lasers in Engineering 47 (2009) 1286–1292 1287



Download	English	Version:

https://daneshyari.com/en/article/746105

Download	Persian	Version:

https://daneshyari.com/article/746105

Daneshyari.com

https://daneshyari.com/en/article/746105
https://daneshyari.com/article/746105
https://daneshyari.com/

