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Committee machine for LPG calorific power classification
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Abstract

This work shows the results of the development of a robust system as an alternative to recognize the quality of an alcohol vapor fuel sample
and liquid petrol gas (LPG) calorific power in an electric nose. Two experimental methodologies were implemented to extract the features of
alcohol vapor fuel and LPG gas patterns. The first approach used the multi-layer perceptron (MLP) topology of artificial neural networks (ANN)
to recognize alcohol vapor fuel patterns. The second approach processed data to develop an LPG calorific power recognizing system that is robust
to the loss of a random sensor. Three systems were used. The first implemented an MLP to recognize all data that simulated the failure of a random
sensor. This system had 97% of right responses. The second implemented seven MLPs trained with input data subsets, so that six MLPs were
trained with a different failure sensor, and the seventh MLP was trained with data considering all sensors without failure. This system had 99% of
right responses. The third implemented an ensemble static learning machine containing 10 parallel MLPs. This system had 97% of right responses.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

There has been an increase in interest in electronic noses (e-
nose’s) systems applied to both academic and industrial fields,
because of their possibility to conduct direct measures with few
refinements and easy implementation [1]. An e-nose has many
applications: for example, liquid and solid food smell recog-
nition [2–4], chemical perfumes and reagents [4], lung cancer
detection using the expired breath of an ill person [5], alcoholic
breath measure of a driver [1], potable water quality evaluation
[6], fuel pattern recognition [7], among others.

An e-nose system is usually implemented by using an artifi-
cial neural network (ANN), because of its robustness to noisy
samples analyzed [8], and its generalization capability that usu-
ally promotes correct recognition of input samples that were not
present in the training data set. Liquid petrol gas (LPG) calorific
power recognition applications are discussed in this paper.

Traditional methods of gas calorific power measures can be
divided into three categories [9]: calorimetric bomb gas sample
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combustion, open flame gas sample combustion, and no flame
catalytic combustion. These methods usually require expensive
machinery. This work aims to implement a robust system to
recognize a LPG calorific power pattern even with the failure of
one random sensor, or when a sensor loses its sensitivity to the
target gas. Combination of MLPs will be discussed to solve this
pattern recognition problem. Two approaches will be used: static
ensemble committee machines [8,10], and a substitutive MLP
machine containing an arrangement of seven MLPs, such that
six MLPs are trained with data subsets simulating one sensor
failure, and one MLP is trained using the original train data
set.

2. Methodology and experimental results

Six Taguchi Tin Oxide sensors were used: TGS-2442, TGS-
2600, TGS-2602, TGS-2610, TGS-2611 and TGS-2622. They
were named respectively as Sensor 1, Sensor 2, Sensor 3, Sen-
sor 4, Sensor 5 and Sensor 6. They detect several substances
including carbon monoxide, ethanol, methanol, butane, among
others. They were chosen in order to avoid the “tune” effect
of the detected substances. Thus, they had to be sensitive by a
large number of subparts of the measured substance [11]. More-
over, the selection of the substances was done in the pattern
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recognition stage. Therefore, the criteria to choose the quantity
and types of sensors were based in diversity of analyzed samples
and diversity the responses of sensors [11].

2.1. LPG experimental data processing

Two LPG patterns were used: pure LPG and a mixture of LPG
and nitrogen. The second pattern simulated a lower calorific
power LPG. Pure LPG volume of 0.2 ml was injected in the
e-nose system. Mixture volume of 1 ml was used. This mix-
ture was obtained using a flow gas control system. A pure LPG
flow of 200 sccm was mixed with a flow of 1000 sccm of nitro-
gen gas. Thus, the rate of this mixture was 1 LPG part for five
parts of nitrogen. About 36 pure LPG and 43 mixture experi-
mental samples were obtained. This mixture simulated a lower
calorific power LPG than the first pure LPG pattern. Experimen-
tal data were processed in MATLAB software to extract the input
attributes for MLP training step. Fig. 1 shows these experimental
data samples.

The third sensor was the least sensitive of the sensor matrix
because it detects ethanol, toluene and ammonia, and the LPG
is composed mainly by butane and propane gases.

The final and initial resistance values of each experimen-
tal measure were used. The normalized resistance attributes
extracted from sensors data were calculated by Eq. (1). The
samples of each pattern were divided into training and test sub-
sets. Validation subsets were not used because of the reduced
number of experimental samples:

RNORM = RINITIAL − RFINAL

RINITIAL
(1)

The first approach of data processing considered all sensors
functioning correctly. The second approach simulated the failure
of a random sensor inside the e-nose system sensor array. It
was assumed that a flawed sensor loses its sensitivity. Thus, its
corresponding attribute will be zero.

2.2. First experiment: single MLP to train good sensors
experimental data

An MLP had been tested 100 times, to verify its general-
ization capability. Moreover, the MLP with the highest capable
generalization feature was chosen. All sensors were considered
properly functional; thus intact experimental data sets were used

Fig. 1. Sensors responses submitted to two different LPG ambient. The square symbols correspond to sensors responses to pure LPG and circles correspond to the
mixture of LPG + N2 gas sample. In the all the cases, the sensors responses were normalized relative of their initial conditions.
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