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A B S T R A C T

Robust quantification of the environmental performance of agricultural management practices is critical both for
ensuring regulatory compliance and for creating accountability in voluntary environmental markets and cor-
porate sustainability commitments. Because environmental impacts cannot be measured under all conditions
and on all farms, models are required. However, models must be used appropriately if predictions of environ-
mental performance are to be reliable. To assist policymakers and stakeholders, we define a 7-step process for
model selection and use, and present a case study applying this 7-step process to greenhouse gas emissions from
corn (Zea mays L.) fields in the USA. Based on this case study and other examples from the literature, we suggest
that all models are limited by the data available to validate them for different combinations of cropping systems,
management practices, site conditions, and types of environmental performance. Additionally, both statistical
and process models are much more reliable for making predictions of environmental performance for multiple
fields and years than for predictions of a single location and year. We suggest that using this 7-step process will
help improve predictions of environmental performance for regulatory and voluntary purposes at local, state,
and national scales.

1. Introduction

Models representing how agriculture affects the environment have
become increasing accessible via the internet, often with graphical user
interfaces that make them accessible to a wide variety of users.
However, non-expert users are often unaware of the limitations of
model suitability resulting from both model structural uncertainty (si-
mulation of the underlying biophysical processes) and limited avail-
ability of data for model validation. As a result, models may be selected
based on user accessibility rather than due to proven performance for
the specific task at hand. This is especially important because results are
unlikely to receive the scrutiny accorded peer-reviewed research.

In this article, we define a best practice framework for using models
in developing and implementing methods to quantify the environ-
mental performance of agricultural management practices in a Payment
for Ecosystem Services (PES), regulatory, or voluntary setting (in-
cluding corporate sustainability commitments). The primary audience
is policymakers and stakeholders in the agricultural and environmental
management communities who seek to use models for applied (not
research) purposes of quantifying diverse environmental impacts of
management practices in agricultural and other managed landscapes.

We demonstrate the use of the 7-step process using a case study of
agricultural greenhouse gas (GHG) emissions while noting that similar
concerns and procedures are broadly applicable for quantifying the
environmental impact of land management practices on soil, water, and
air quality. Given the spatial and temporal context of regulatory policy
(structured as payment-for-performance, e.g. Angelsen, 2017), PES
markets (e.g. CAR, 2012), and corporate sustainability commitments,
we focus on regional (aggregated) field-scale assessment of environ-
mental performance and annual to multi-year time scales. Models can
also be used to predict longer-term (e.g., multi-decadal) environmental
impacts that cannot be fully validated, such as future effects of climate
change on water quantity and quality. However, such uses of models
are beyond the scope of the 7-step process defined herein.

2. Models for assessing environmental performance

2.1. Why do we need models?

Models are needed because measurement of all relevant ecosystem
processes and types of environmental performance is precluded by
technical and financial reasons. Models are increasingly a component of
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environmental planning and management for agriculture (e.g. Garrett
et al., 2013; Melkonian et al., 2008). Many commonly used agricultural
models were developed to assess regional environmental performance
of agricultural best management practices (BMPs). For example, United
States Department of Agriculture (USDA) research teams developed the
SWAT (Neitsch et al., 2009) and EPIC (Williams, 1995) models to
quantify the impact of management practices on nutrient cycling, soil
erosion, and water quality. Traditionally these complex process models
have been used by experts to test model features or apply the model to
specific regions for which site-specific data are available for model
calibration and validation. However, with emerging interest in various
PES markets, such as carbon markets and water quality markets, model
predictions are increasingly applied as a way to (1) design BMPs for PES
market protocol descriptions and (2) verify that environmental per-
formance has improved following BMP implementation. Companies
pledging to reduce supply chain greenhouse gas emissions and/or water
quality impacts likewise place increasing reliance on models to focus
their efforts and track impacts. Despite widespread interest in using
model predictions as a key component of defining and meeting land
management goals, there is not a broadly accepted process for selecting
appropriate models for PES market, voluntary accounting, regulatory,
or policy applications. This is particularly problematic for complex
process models that are increasingly applied outside of the research
settings in which they were developed and tested. Specifically, such
models are increasingly used by non-experts who lack a thorough un-
derstanding of the biophysical mechanisms underlying the model as
well as the limitations and assumptions represented by model algo-
rithms and parameters. For example, food supply chain sustainability
initiatives may apply a process model to identify and rank potential
GHG emissions reductions associated with various land management
scenarios, with model results determining priorities for funding deci-
sions. In such situations, inaccurate model predictions may divert
available funding to projects with limited potential to improve en-
vironmental performance. Such use of models by non-experts and
outside of the scientific peer-reviewed publication process is expected
to increase as large areas of farmland enroll in PES or similar projects
that require quantification of environmental performance for project
design and verification. Our best practice methodology provides step-
by-step guidelines to assist non-expert teams and policy makers as they
select quantitative tools relevant to their land management goals.

2.2. Statistical versus process models

The simplest models are statistical (also called empirical) models.
Such models predict environmental performance as a function of ob-
served relationships between a process and one or more independent
variables; complete ecosystem processes are not modeled. Statistical
models define regionally-specific functional relationships based on data
from field experiments or environmental surveys relevant to specific
cropping systems, soil textures, or climates. For example, for agri-
cultural GHG emissions, statistical models of N2O emission have been
used to simplify the complexity of nitrogen (N) gas emission measure-
ment and modeling (e.g. Dalgaard et al., 2011; Leip et al., 2011; Millar
et al., 2010; Tonitto et al., 2009). Statistical models are almost always
simpler, more transparent, and easier to use than process models.
Therefore, there is less risk of a spurious prediction from a statistical
model than from a process model. However, because statistical models
depend entirely on the observations used to derive the relationship,
regionally-specific (Tier 2) statistical models generally have a smaller
geographic range of application than process models (Smith et al.,
2012). We use the term “observations” to mean reliable, publically
available (preferably peer-reviewed) data, such as from field experi-
ments or on-farm measurements, that are directly applicable to the
cropping system and management practice under investigation.

In contrast to statistical models, complex ecosystem process models
attempt to represent all processes affecting environmental flows and

stocks. Process models are appealing to non-experts because they may,
in theory, be capable of making predictions for many combinations of
geography, climate, cropping system, and management practice. In
practice, however, process models are limited by incomplete scientific
understanding of key processes. For example, mechanistic descriptions
of controls on soil organic carbon (SOC) stabilization (e.g.Giardina and
Ryan, 2000; Kramer et al., 2012; Mikutta et al., 2006; Sollins et al.,
2006; Torn et al., 1997, 2005) and impacts of management practices on
long-term SOC sequestration (e.g. Baker et al., 2007; Eagle and
Olander, 2012) remain incomplete. As a result, the full mechanistic
complexity of SOC accumulation is not currently represented in eco-
system models (Tonitto et al., 2016). In addition, the ability to use a
model for specific management scenarios or site conditions is always
limited by the availability of field data to validate model predictions.
Together, these limitations pose challenges for the use of process
models. A recent synthesis of agroecosystem model applications (Brilli
et al., 2017) found that: 1) 52% of N-cycle applications demonstrated
poor validation due to limitations in model representation of soil phy-
sical and chemical properties, and climate (pedo-climate), 2) model
representation of management practices led to poor validation out-
comes in 43% of C-cycle applications, and 3) model representation of
pedo-climate led to poor simulation of spatial and temporal C- and N-
cycle dynamics in 20% of applications (Brilli et al., 2017). These results
are consistent with other reviews of process model applications that
demonstrated high variation in predictions by individual models within
model ensemble studies (e.g. Ehrhardt et al., 2018), poor agreement
between seasonal GHG predictions and observations (e.g. Tonitto et al.,
2016), the need for site-specific calibration of water quality models
(Forsberg et al., 2017), and overall poor performance of process-based
fate and transport water quality models compared to simpler statistical
models (Kleinman et al., 2017). For example, a recent test at 11 US sites
found that a daily process model did not outperform an annual statis-
tical model in predicting phosphorus pollution from agricultural fields
(Bolster et al., 2017). Therefore, while process models may appear to be
more broadly applicable and flexible they may be equally limited by
data availability as are statistical models.

However, in some situations a suitable process model may offer
more capacity to model different management practices or changing
climatic conditions. For example, for well-studied Fluxnet-Canada
cropping systems Goglio et al. (2018) demonstrated that the DNDC
model produced more accurate predictions of observations than did
statistical IPCC Tier 1 and Tier 2 models. While process models can
simulate nuanced changes in management or site conditions, this does
not guarantee improved prediction accuracy. Validation studies have
demonstrated that seasonal predictions often don’t capture observed
trends (e.g. Beheydt et al., 2007; Bolster et al., 2017). For example, a
model may not accurately predict system response to weather patterns,
resulting in prediction of peak events that do not occur or missing peak
events that are observed. In addition, input data quality can affect
model predictions. Bagstad et al. (2018) demonstrated that process
models predicted very different magnitudes for some ecosystem prop-
erties (such as soil C and sediment export) depending on the resolution
of the input data, indicating that systems with limited input observa-
tions may not be more accurately predicted using process models.
Specifically, Bagstad et al. (2018) concluded that for more complex
models applied to address heterogeneous sites, data and model choices
could strongly influence predictions. Similarly, in a comparison of
agroecosystem models for grassland, maize, rice, and wheat cropping
systems, Ehrhardt et al. (2018) found that while increased site input
data increased the accuracy of yield predictions, increased site ob-
servations did not improve (or for some systems reduced) the number of
models with N2O emission predictions within 1 SD of observations.
Therefore, this ensemble comparison indicates that, for the example of
N2O emissions, model predictive capacity remains uncertain; un-
certainty in predcitive capacity is likely due to both model structural
uncertainty as well as N2O emission observations with inadequate
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