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a b s t r a c t

The electron spin properties provided by semiconductors are of immense interest because of their
potential for future spin-driven microelectronic devices. Modern charge-based electronics is dominated
by silicon, and understanding the details of spin propagation in silicon structures is key for novel
spin-based device applications. We performed simulations on electron spin transport in an n-doped
silicon bar with spin-dependent conductivity. Special attention is paid to the investigation of a possible
spin injection enhancement through an interface space-charge layer. We found substantial spin transport
differences between the spin injection behavior through an accumulation and a depletion layer. However,
in both cases the spin current density can not be significantly higher than the spin current density at
charge neutrality. Thus, the maximum spin current in the bulk is determined by its value at the charge
neutrality condition - provided the spin polarization at the interface as well as the charge current are
fixed.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The tremendous increase of computational power of integrated
circuits is supported by the continuing miniaturization of semicon-
ductor devices’ feature size. However, with scaling approaching its
fundamental limits the semiconductor industry is facing the neces-
sity for new engineering solutions and innovative techniques to
improve MOSFET performance. Spin-based electronics (spintron-
ics) is a promising successor technology which facilitates the use
of spin as a degree of freedom to reduce the device power con-
sumption [1,2]. Moreover, the spintronic devices are expected to
be faster and more compact.

Silicon, the main material of microelectronics, possesses several
properties attractive for spintronics [3]: it is composed of nuclei
with predominantly zero spin and it is characterized by weak
spin–orbit interaction, which should result in a low relaxation rate
accompanied by a longer spin lifetime as compared to other semi-
conductors. Since silicon technology is well established, it will help
bringing silicon spin-driven devices to the market. Spin transfer in
silicon over long distances has been demonstrated experimentally
[4], and a large number of devices utilizing spin has already been
proposed [5].

Regardless of the indisputable advantage in realizing spin injec-
tion, detection, and the spin transport in silicon at ambient tem-
perature, several difficulties not explained within the theories are
pending. One of them is an unrealistically high amplitude of the
voltage signal corresponding to the spin accumulation in silicon
obtained within the three-terminal spin injection/detection
scheme [3]. Recently, an explanation based on the assumption that
the resonant tunneling magnetoresistance effect and not the spin
accumulation causes the electrically dependent spin signal in local
three-terminal detection experiments, was proposed [6,7]. It
remains to be seen, if the theory is able to explain all the data
including the spin injection experiments through a single graphene
layer, where the amplitude of the signal is consistent with the spin
accumulation in silicon [8]. Alternatively, an evidence that a proper
account of space-charge effects at the interface may boost the spin
injection signal by an order of magnitude was presented [9].

In this paper we investigate the influence of the space-charge
effects to boost spin injection in semiconductors. Considering
charge accumulation and depletion at the spin injection boundary,
we observe major differences in the spin current behavior. The
existence of the upper threshold spin current under high spin accu-
mulation [10] is confirmed. We demonstrate that the threshold
spin current in the bulk is determined by the spin current value
injected at the charge neutrality condition under the assumption
that the spin polarization and the charge current are fixed. We
show that in accumulation the ratio of the spin density s to the
charge concentration n, or the spin polarization P ¼ s=n, remains

http://dx.doi.org/10.1016/j.sse.2014.06.035
0038-1101/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +43 15880136060.
E-mail addresses: ghosh@iue.tuwien.ac.at (J. Ghosh), windbacher@iue.tuwien.ac.

at (T. Windbacher), sverdlov@iue.tuwien.ac.at (V. Sverdlov), selberherr@iue.tuwien.
ac.at (S. Selberherr).

Solid-State Electronics 101 (2014) 116–121

Contents lists available at ScienceDirect

Solid-State Electronics

journal homepage: www.elsevier .com/locate /sse

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sse.2014.06.035&domain=pdf
http://dx.doi.org/10.1016/j.sse.2014.06.035
mailto:ghosh@iue.tuwien.ac.at
mailto:windbacher@iue.tuwien.ac.at
mailto:windbacher@iue.tuwien.ac.at
mailto:sverdlov@iue.tuwien.ac.at
mailto:selberherr@iue.tuwien.ac.at
mailto:selberherr@iue.tuwien.ac.at
http://dx.doi.org/10.1016/j.sse.2014.06.035
http://www.sciencedirect.com/science/journal/00381101
http://www.elsevier.com/locate/sse


practically unchanged due to the narrow accumulation layer.
Therefore, the spin and the spin current densities decay fast
through the accumulation layer determined by the decrease of
the charge concentration from its high value at the interface to
the equilibrium value determined by the bulk donor concentration.
The spin current in the bulk is determined by the spin polarization
and the charge current density at the end of the accumulation
layer, where the charge neutrality condition is fulfilled. In deple-
tion, however, the situation can be more complex. In the case when
the spin diffusion is against the electric field, the spin current
remains constant through the depletion region. But, due to the
large influx of the minority spins into the depletion layer the spin
polarization decreases drastically which causes a significant reduc-
tion of the spin current in the bulk as compared to that at the
charge neutrality condition. Thus, in both cases of spin transport
through the depletion and accumulation region the spin current
density cannot be significantly higher than the spin current density
at the charge neutrality condition, the value of which is deter-
mined by the spin polarization at the interface and the value of
the electric field.

We begin with a short review of the spin and charge drift–dif-
fusion equations in the next section. In contrast to the highly non-
linear set of equations describing the transport in the language of
chemical potentials [10] suitable for metals, we use the employed
equations to describe the transport properties in semiconductors
[11,12]. Due to its importance, the solution at the charge neutrality
condition is presented next. The system of equations for the elec-
trostatic potential, charge density, spin density, and currents are
solved numerically to investigate the spin injection in depletion
and accumulation. The boundary conditions used to introduce
the non-equilibrium charge density at the interface and thus a
nonzero total charge in the system distinguish our approach from
the one employed in [12]. The analytical solution at the charge-
neutrality condition is used in order to validate the numerical solu-
tion. Finally, a discussion of the numerical results is presented.

2. Model

The spin drift–diffusion model is successfully used to describe
the classical transport of charge carriers and their spins in a semi-
conductor. The expression for up (down)-spin current, J"ð#Þ, can be
written as [11]:

J"ð#Þ ¼ en"ð#ÞlEþ eDrn"ð#Þ; ð1Þ

where D is the electron diffusion coefficient, l is the electron mobil-
ity, E denotes the electric field, and e is the absolute charge of an
electron. The up (down)-spin concentration is expressed as n"ðn#Þ.
The electron concentration is thus represented as n ¼ n" þ n# and
the spin density s ¼ n" � n#. The electron (spin) current is defined
as [11] JnðJsÞ ¼ J" � J#.

The steady-state continuity equation for the up (down)-spin
electrons including the spin scattering reveals [11]:

r � J"ð#Þ ¼ �e
n" � n#

s

� �
; ð2Þ

where ss ¼ s
2 is the spin relaxation time. The Poisson equation,

defining the electric field, reads:

r � E ¼ �e
n" þ n# � ND

�Si
; ð3Þ

where �Si is the electric permittivity of silicon and ND is the doping
concentration. We denote Vth as the thermal voltage: Vth ¼ KBT

q ,
where KB is the Boltzmann constant, T the temperature
(T ¼ 300 K), q ¼ e. The intrinsic spin diffusion length is defined as
L ¼

ffiffiffiffiffiffiffiffi
Dss
p

and the diffusion coefficient D is related to the mobility

by the Einstein relation D ¼ lVth. The charge current and the spin
currents are:

Jn ¼ enlEþ eD
dn
dx
; ð4Þ

Js ¼ eslEþ eD
ds
dx
: ð5Þ

The spin density affirms:

d2s

dx2 þ
1

Vth

� �
dðsEÞ

dx
� s

L2 ¼ 0; ð6Þ

where both s and E are position dependent. The spin drift–diffusion
equation must be solved self-consistently with the Poisson and
charge transport equation.

2.1. Spin injection at charge neutrality

Eq. (6) as well as the charge drift–diffusion equation and the
Poisson equation must be supplemented with appropriate bound-
ary conditions. We consider charge and spin transport through a
bar of length W. We assume that the spin density is zero at the
right interface while the charge concentration is equal to ND:

sðx ¼WÞ ¼ nW
" � nW

# ¼ 0;

nðx ¼WÞ ¼ nW
" þ nW

# ¼ ND:

Here, nw
"ð#Þ is the up (down)-spin concentration at the right contact.

At the left boundary the spin value is kept constant:

sðx ¼ 0Þ ¼ s0 ¼ n0
" � n0

# : ð7Þ

Here, n0
"ð#Þ is the up (down)-spin concentration at the spin injection

point. The electron concentration n0 at the interface is defined by:

nðx ¼ 0Þ ¼ n0
" þ n0

# ¼ n0: ð8Þ

These boundary conditions are different from the von Neumann
boundary conditions used in [10] and allow to describe the spin
current not only for an accumulation layer but also for a depletion
layer. The set of the boundary conditions must be supplemented by
defining the electrostatic potential difference Uc between the left
and right boundary of the semiconductor bar, which defines the
electrostatic field obtained by the Poisson equation.

By this, the same spin density value s0 at the interface can be
provided for different n0. Therefore, the total charge at the inter-
face n0 offers an additional degree of freedom and allows to study
the influence of the space-charge layer at the interface on the effi-
ciency of the spin injection and transport in a semiconductor. If we
affix n0 ¼ ND, the charge neutrality at the interface (and as a con-
sequence throughout the whole sample) is preserved. In this case,
the electric field E will be constant throughout the bar and the
expression for the electron charge current (4) is Jc ¼ eNDlE, where
E is defined by the applied voltage and W as E ¼ Uc=W . The general
solution for the spin density is [11,10]:

s ¼ A1 exp
�x
Ld

� �
þ A2 exp

x
Lu

� �
: ð9Þ

The constants A1 and A2 are defined by the boundary conditions.
Here, the electric field dependent up (down)-spin diffusion length
is given by:

LuðLdÞ ¼
1

� jeEj
2 KBT þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eE

2KBT

� �2
þ 1

L2

r : ð10Þ

Therefore, LuðLdÞ monotonically decreases (increases) with the
applied electric field and its direction.
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