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Abstract

The concentration of several pollutants, usually present in industrial waste waters, is predicted by the neural network data processing of absorption
and fluorescence measurements in the visible spectral range. Proper network training provides quantitative analysis of many pollutants with sub-ppm
resolution. Compact optical fibre instrumentation for absorption spectroscopy and an innovative flowcell for fluorescence measurements enable
cost-effective, in situ, nonstop monitoring of waste waters.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The demand for real-time monitoring of toxic pollutants
is steadily growing as human activities increasingly pollute
drinking- and seawater resources. The most-polluting sub-
stances and their maximum allowed concentrations are summa-
rized in Table 1. In this work, we propose to optically monitor a
targeted group of pollutants in situ by innovative optical instru-
mentation. The absorption and fluorescence measurements are
processed by a novel neural network analysis scheme.

The substances identified by the authors as primary pollu-
tants in their countries were chromium, lead, copper, sulfide,
benzene, toluene, and naphthalene, alone or in mixtures. Dis-
charges from the tanning industry are mostly to blame for the
presence of chromium, lead, copper, and sulfide. Water contam-
inated by these pollutants has absorption spectra in the visible
spectral range that are modulated by pollutant concentrations.

∗ Corresponding author. Tel.: +39 055 522 6361; fax: +39 055 522 5000.
E-mail address: a.g.mignani@ifac.cnr.it (A.G. Mignani).

1 Tel.: +972 3 6408125; fax: +972 3 6410189.
2 Tel.: +44 1227 823 288; fax: +44 1227 827 558.
3 Tel.: +39 055 522 6361; fax: +39 055 522 5000.
4 Tel.: +357 2 338 671; fax: +357 2 339 060.

Benzene, toluene, and naphthalene produced by the oil industry
are detected by fluorescence measurements.

A neural network analysis of the measured spectra was used
to predict pollutant concentration. The same data processing
scheme was applied to both absorption and fluorescence spec-
tra. Custom fibre optic instrumentation for on-line absorption
spectroscopy and an original flowcell for fluorescence measure-
ments provided nonstop water monitoring. The system has the
advantage of not requiring sampling or the presence of skilled
operators.

The novelty and uniqueness of this work lie in its synergetic
effect, far greater than the sum of the individual contributions,
which has produced not only a successful quantitative neural
network analysis of measured spectra, but which has also showed
the possibility of using simple, basic cost-effective concepts and
instrumentation. The cumulative efforts of scientists from four
different countries (Cyprus, Israel, Italy, and the UK) addressed
a major need of Mediterranean countries, i.e., the monitoring
of water, a resource which is becoming increasingly scarce in
the Mediterranean basin. The results achieved by this synergy
represent an advance in monitoring the pollutants affecting the
vast majority of European countries.

After presenting the spectroscopic (Section 2) and the neural
network models (Section 3), we proceed to apply them to both
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Table 1
Maximum allowed concentration of several undesirable substances in excessive
amounts and toxic substances in drinking water

Aluminium 200 ppb
Arsenic 50 ppb
Cadmium 5 ppb
Chromium 50 ppb
Mercury 1 ppb
Nickel 50 ppb
Lead 50 ppb
Antimony 10 ppb
Selenium 10 ppb
Boron 2 ppm
Iron 200 ppb
Manganese 50 ppb
Copper 3 ppm
Silver 10 ppb
Zinc 5 ppm
Phosphorus 5 ppm
Fluorides 700 ppb
Calcium 250 ppm
Magnesium 50 ppm
Sodium 150 ppm
Potassium 12 ppm
Nitrogen 1 ppm
Cyanides 50 ppb
Chlorides 400 ppm
Sulfates 250 ppm
Nitrates 50 ppm
Nitrides 100 ppb
Ammonium 500 ppb
PAH 0.2 ppb
Benzo 3,4 pyrene 0.01 ppb
Tetrachloromethane 3 ppb
Trichloroethane 30 ppb
Tetrachloroethene 10 ppb

absorption (Section 4) and fluorescent data (Section 5). Section
6 presents a compact fibre optic probe for in situ absorption
measurements, while Section 7 describes a simple flow cell for
drawing water for fluorescent analysis.

2. Spectroscopic models

The same model is applied to both absorption and fluores-
cence measurements and is based upon the well-known Beer
Lambert law [1]. For low pollutants concentrations we have:

OD({ci}, λ) =
∑

i

ci · ODi(λ) (1)

F ({ci}, λ) =
∑

i

ci · Fi(λ), (2)

where ODi(λ) is the optical density at wavelength λ, of the ith
component, whose concentration is ci, OD(λ) the optical density
of the mixture, with corresponding expressions for the fluores-
cence intensities Fi(λ) and F(λ) (normalized by the intensity of
the exciting light).

Once we know the spectra of all the components {ODi(λ);
Fi(λ)} and measure the spectrum of the mixture {OD({ci},
λ); F({ci}, λ)}, we can use a mathematical tool to estimate
the {ci}.

3. The neural network

Real-time estimation of pollutant concentrations requires the
handling of large amounts of data in the presence of noise.
Many methods have been developed to address this issue. Few
of them, such as principal component regression, partial least
square regression, multivariate calibration based on the linear
mixture model and others are described in ref. [2]. Most of the
techniques rely on some sort of least mean square regression
in combination with data compression. Any least mean square
algorithm basically involves a matrix inversion. As the amount
of data collected increases, the matrix inversion can become
non-trivial. Thus, the quest for data compression is understood.

In this work we chose to use artificial neural network data pro-
cessing with a modified error function. Neural networks can be
trained using laboratory calibrated measurements [3–5]. Once
trained, it can be used to process experimental data to deter-
mine both the pollutant species and their relative concentration
at a much faster rate than for example, non-negative least mean
square estimation methods. We found that a linear perception-
based neural network can provide both simplicity and sufficient
performance [4].

Mathematically, if �p is a column vector representing the mea-
sured spectral data and �o is a column vector representing the
concentrations of the various pollutants (components), then our
neural network can be expressed by the following equation:

�o = �b + W · �p, (3)

where W and �b denote the network matrices of weights and bias
vector, respectively. To create a network, which produces the
correct output for a given input, it is necessary to adjust these
weight and bias parameters. This is done in a procedure called
training. Using N laboratory-made solutions of M components

at known concentrations,�tn = {c(n)
1 , . . . , c

(n)
M }T

(n = 1, . . ., N and
T denotes vector transpose), we found those W and �b that best
satisfy �tn = �b + W · �pn for all n = 1, . . ., N. Using the iterative
error backpropagation method [3,4], we started with an arbitrary
guess of W and �b, calculated �o from Eq. (3), generated an error
vector �e from Eq. (5) below, and used the error to iteratively
modify W and �b using

d�b = lr · �e; dW = lr · �e · �pT (outer vector product), (4)

until the error fell below a desired threshold. lr determines the
weight and biases changing rate.

To maintain similar precision over a wide range of concen-
trations we chose a fractional error measure given by:

�e =
{

e1, . . . , ei = 10 log10

(
ti

oi

)
, . . . , eM

}T

. (5)

There are many methods to determine the appropriate learn-
ing rate such that the learning convergence would be fast, without
oscillations and would prevent getting stuck in local minima.
We used both the adaptive learning and the momentum methods
[3–5].

The above mention architecture and training method for the
neural network practically causes the neural network to assign
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