Author's Accepted Manuscript

A robust model for a humanitarian relief network with backup covering under disruptions: a real world application

Donya Rahmani, Arash Zandi, Elnaz Peyghaleh, Nima Siamakmanesh

www.elsevier.com/locate/iidi

PII: S2212-4209(18)30207-3

DOI: https://doi.org/10.1016/j.ijdrr.2018.02.021

Reference: IJDRR803

To appear in: International Journal of Disaster Risk Reduction

Received date: 14 July 2017

Revised date: 12 December 2017 Accepted date: 14 February 2018

Cite this article as: Donya Rahmani, Arash Zandi, Elnaz Peyghaleh and Nima Siamakmanesh, A robust model for a humanitarian relief network with backup covering under disruptions: a real world application, *International Journal of* Disaster Risk Reduction, https://doi.org/10.1016/j.ijdrr.2018.02.021

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A robust model for a humanitarian relief network with backup covering under disruptions: a real world application

Donya Rahmani^{a*}, Arash Zandi^a, Elnaz Peyghaleh^b, Nima Siamakmanesh^a Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran ^bGlenn department of civil engineering, Clemson University, Clemson, USA drahmani@kntu.ac.ir

Azandi@mail.kntu.ac.ir

epeygha@clemson.edu

nsiamakmanesh@mail.kntu.ac.ir

*Corresponding author.

Abstract

In this paper a reliable and robust model for the humanitarian relief supply chain has been presented to deal with the risk of facility disruptions after an earthquake. Assignment of backup suppliers for affected population centers is considered in order to improve the reliability of the model. Employment of public local centers and defining a two-level structure for rescue centers was considered to raise the accessibility to population centers. A four-step methodology was suggested to define the input parameters of the model which were affected by the uncertainty associated with the magnitude of an earthquake. To investigate this uncertainty, the potential epicenters of probable earthquakes and their magnitudes were assumed as uncertain parameters and estimated with a set of scenarios. A scenario-based robust optimization approach was used to sweep over the uncertain parameters. In the proposed methodology, a practical three-factor function was described to determine the impact of an earthquake on rescue centers and demand points. A solution method was proposed based on Lagrangian relaxation method, whose computational efficiency was also examined. A case study in Tehran was used to show the performance of the model in addition to determine whether the proposed methodology was efficient and practical. The computational results revealed the efficiency of the proposed model and sensitivity analyses indicated that the proposed model could be useful in conditions where budget constraints exist.

Download English Version:

https://daneshyari.com/en/article/7471457

Download Persian Version:

https://daneshyari.com/article/7471457

<u>Daneshyari.com</u>