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a b s t r a c t

The restoration of lifeline infrastructures following a major disruptive disaster is a complex task. Along
with the implementation of mitigation measures, pre-event recovery planning can be of great assistance
to this process. This paper seeks to inform such planning discussions by suggesting likely paths of re-
covery over time, and in turn computing indicative estimates of expected restoration times. While
current methods can require significant amounts of data and are calibrated to few events, the presented
approach analyses and combines 63 electricity, water, gas, and telecommunications post-disaster in-
frastructure recoveries from across the world. Recoveries are compared across disaster types with global
median recovery curves produced to inform likely restoration rates for future disasters. Models based on
initial outages or seismic shaking intensity directly provide estimates of expected recovery times back to
90% operability of the initial disruption. An application of the presented methodology is presented as a
case study for the Wellington Region of New Zealand with recovery estimates comparing favorably with
those presented in the literature.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Following a natural disaster, the repair of infrastructures back
to comparable pre-disaster levels are of major importance for both
the livelihood of citizens [47] and maintaining economic activity
across a city or region [58,59]. While infrastructure component
damage is typically estimated for a given event intensity through
fragility curves [56,62], the prediction of system level recovery can
prove difficult due to specific network properties, the nature of
disruption, and dependencies on other infrastructures during re-
covery efforts.

In defining the restoration of infrastructure functionality over
time, modeling approaches typically take the form of statistical
curve fitting or through simulations, such as resource constrained
models [35,9], Markov processes [34,41,77], or detailed network
models [5,51]. In modeling the restoration process, the determi-
nistic resource constraint approach estimates recovery times
based on empirical or assumed repair rates and available re-
sources. Similarly, a Markov Process approach can model the dis-
tribution of limited resources, however, the state of each system at
any time are considered to follow a random process, hence the
ability to model uncertainty explicitly. Network models typically

comprise high resolution supply and demand nodes connected by
links to simulate the repair and propagation of infrastructure op-
erability allowing spatial and temporal recovery. While such
methodologies can optimize restoration scheduling priorities, in-
put data requirements are significant with results typically loca-
tion specific and limited in transferability to other areas without
developing new models. This is where the advantage of using
statistical approaches is realized.

Such approaches derive restoration curves based on empirical
data, where the specific restoration process is not modeled di-
rectly, with earthquake shaking intensity typically used to define
the overall system outage level, ultimately producing a single re-
covery curve. The fitting of curves to empirical data using an as-
sumed functional form enables comparisons between recovery
efforts of alternate disasters [56,8].

For discrete-event scenarios, Chang et al. [8] estimate restora-
tion times and curves for water and electricity networks based
solely on the 1971 San Fernando Earthquake and the 1994
Northridge Earthquake’s respectively. Similarly, though calibration
to the 1995 Hyogoken-Nanbu Earthquake, Nojima and Kato [53]
predict outage durations and affected populations for Japanese
earthquakes based on shaking intensity, lifeline service penetra-
tion, and population density predictors.

With more calibration data, Liu et al. [46] take a different ap-
proach and apply statistical models to estimate electricity outages
across fourteen wind based events. While Nateghi et al. [49] and
Guikema et al. [29] follow a similar approach, both estimating
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outages as a function of climatic, topographical, land cover, human
and material resources, and population densities amongst others.
Ultimately these approaches require a significant amount of po-
tentially difficult to obtain input data which can be limited in ac-
curacy – if accessible at all. For this reason, alternate methods
utilizing expert opinions in modeling restoration over time have
been proposed for specific geographies [1,2], however, with a
number of significant disasters since publication, empirical data is
of interest to this study.

While a range of approaches have been taken to predict the
expected recovery from a disruptive event over time, challenges
are presented for practitioners in the requirement of significant
amounts of input data and the inherent methodological and
computational complexities that arise in such modeling efforts.
This study seeks to contribute to the existing literature through
the provision of a scalable and spatially transferable approach to
estimate restoration times based on a specific outage level – ulti-
mately minimizing the required input data while widening the
predictive capacity. The aim of the presented approach is to pro-
vide indicative predictions of restoration times for pre-event
planning purposes through combining empirical infrastructure
recovery data from a range of geographies and types of natural
disasters. As such datasets have not been observed in the litera-
ture, conclusions drawn can shape recommendations for future
studies in the field.

The paper begins by defining the properties of restoration
curves to establish terminology used in the paper (Section 2). This
is followed by the construction of dimensionless global median
restoration curves with comparisons across the disruptive event
categories and the selected electricity, water, gas, and tele-
communications infrastructures (Section 3). Models for scaling
these restoration curves are developed in Section 4, and are then
applied as a case study for the Wellington Region of New Zealand
with comparisons to the current literature surrounding this major
earthquake scenario in Section 5. The paper concludes with a
discussion surrounding the limitations of the models and future
use.

2. Characterising restoration curve properties

The restoration of an infrastructure is typically represented by
plotting the functionality of the ith infrastructure Qi(t) over time t,
following a disruptive event at t0 (Fig. 1).

The term functionality can represent a wide range of variables

such as; the population without service [53], connections not re-
ceiving service [17,38,68], or the percentage of operable nodes/
links [2] amongst others. Depending on the spatial and temporal
resolution of collected data, variations in population densities can
provide a range of functionality estimates. For simplicity, this
study assumes that reported functionality parameters are suffi-
ciently similar and hence comparable between disasters, however,
only a single one of these variables is accepted in each function-
ality dataset.

At the time of disruption, t0, the resulting functionality Qi(t0¼0)
is an indication of infrastructure robustness (Fig. 1), or the ability
for an infrastructure to resist the impacts of an event, where a
reduced value indicates low robustness and a high value suggests
little damage is evident i.e. a highly robust infrastructure. As
shaded in Fig. 1, integrating below the curve across a specific time
period represents the resilience of the ith infrastructure, Ri [11].
This provides an index appropriate for comparisons of community
performance [4] or infrastructure performance across events [79].

For further comparisons between events, the temporal variable
can be separated into four stages; pre-event, reaction, response,
and recovery phases (Fig. 1). Although an oversimplification of the
typically dynamic and complex infrastructure rebuild process,
each of these stages are usually evident with varying lengths.
Following a disruption at t0, the reaction phase is initiated and is
defined as having no positive infrastructure recovery taking place
in the given time step. The first time step showing positive re-
storation is denoted ts to represent the time to start recovery.
While this period may be insignificant (ts-0), delays in the re-
storation of infrastructures are often apparent. For example, fol-
lowing a significant earthquake event, gas distribution networks
can be automatically shut down in part [33,68] or voluntarily fully
shut down for risk of leaks and acting as a propellant
[22,26,28,40,64,8].

The following phase represents the response to the event,
otherwise referred to as the emergency period [30]. During such
time, normal social and economic activity is still disrupted, how-
ever, lifeline restoration is expected to commence. Fig. 1 indicates
an initial rapid restoration across this period, such that dQi/dt is at
a maximum in the initial stages of the response phase. Such may
be indicative of readily available stored inventories, resources, and
planned alternative service methods. With sufficient knowledge of
the network damage, the response phase begins to represent a
more informed and coordinated response over time, allowing re-
instatement of functionality to the infrastructure through repair or
additional redundancies. Over time, the longer-term recovery

Fig. 1. Example recovery process of a system back to pre-event functionality.
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