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A B S T R A C T

The efficient operation of wastewater treatment plants (WWTPs) is key to ensuring a sustainable and friendly
green environment. Monitoring wastewater processes is helpful not only for evaluating the process operating
conditions but also for inspecting product quality. This paper presents a flexible and efficient fault detection
approach based on unsupervised deep learning to monitor the operating conditions of WWTPs. Specifically, this
approach integrates a deep belief networks (DBN) model and a one-class support vector machine (OCSVM) to
separate normal from abnormal features by simultaneously taking advantage of the feature-extraction capability
of DBNs and the superior predicting capacity of OCSVM. Here, the DBN model, which is a powerful tool with
greedy learning features, accounts for the nonlinear aspects of WWTPs, while OCSVM is used to reliably detect
the faults. The developed DBN-OCSVM approach is tested through a practical application on data from a de-
centralized WWTP in Golden, CO, USA. The results from the DBN-OCSVM are compared with two other de-
tectors: DBN-based K-nearest neighbor and K-means algorithms. The results show the capability of the developed
strategy to monitor the WWTP, suggesting that it can raise an early alert to the abnormal conditions.

1. Introduction

Wastewater treatment processes, that aim to remove pollutants from
wastewater so that it can be safely reused or discharged, are extremely
important for community health and environment. Treated wastewater
can be recycled and re-distributed as non-potable water for cleaning,
agricultural, and industrial purposes, or safely discharged back into the
environment without inducing any serious effects (Grant et al., 2012).
Discharges from WWTP must meet the discharge permit limits and the
national effluent discharge quality standards to protect the environ-
ment and public health (Siegrist, 2017). From a practical point of view,
and environmentally speaking, it is often more beneficial to recycle and
reuse the treated wastewater rather than to discharge it (Castellet and
Molinos-Senante, 2016). For example, the reuse of treated wastewater
is increasingly becoming a necessity in water-stressed countries, such as
countries in the Middle East region, as it offers substantial water - re-
source savings, while simultaneously providing significant financial
benefits, as the costs related to the recycling process are much lower
than those of desalting seawater (Dolnicar and Schäfer, 2009; Côté
et al., 2005).

To achieve the efficient operation of wastewater treatment plants
(WWTPs), some key variables involved in the process, such as dissolved
oxygen, nitrogen, phosphorus, and pH, need to be accurately monitored

and controlled (Boujelben et al., 2017; Kazor et al., 2016). A good
understanding of the WWTP dynamics is required for reliable mon-
itoring and control activities. However, the dynamical behavior of
WWTPs is usually complex and uncertain due to nonlinearity, varia-
tions in the physical properties in terms of the environmental condi-
tions, strong interactions between the process variables involved, and
wide variations in the flow rate and concentration of the composition of
the influent of WWTPs. These many factors increase the difficulty of
monitoring and control tasks.

Increased attention to modeling wastewater processes has led to the
development of several models capable of describing the biological
processes involved in WWTPs (e.g., ASM1, ASM2, ASM2d and ASM3)
(Henze et al., 2000; Mannina et al., 2011; Plattes et al., 2006). How-
ever, these models have complex structures and are comprised of re-
latively large numbers of parameters that must be identified, making
them unsuitable for monitoring purposes. For example, the model
ASM1 is comprised of 13 nonlinear differential equations, which in-
volve 19 parameters that are hard to estimate (Dochain and
Vanrolleghem, 2001). This high level of model complexity represents a
heavy computational burden for the simulation and design process
(Vanrolleghem et al., 1999).

Keeping a WWTP running correctly and safely, and generating the
desired product quality remains a major challenge in environmental
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sustainability (Skrjanc and Teslic, 2008; Lee et al., 2003; Steyer et al.,
1997). Therefore, monitoring in WWTPs has received special attention
from researchers and practitioners in the field of safety engineering.
Many methods have been developed for improving fault detection in
WWTPs. Wang et al. (2017) proposed a statistical approach based on
combined principal components analysis (PCA) and multiple regression
to model a WWTP. Dias et al. (2007) applied an artificial neural net-
work (ANN) and neural fuzzy models for monitoring and predicting
WWTPs. Wilcox et al. (1995) also used ANN model to monitor and
control an anaerobic WWTP. Other researchers focused on using time
series analysis approaches to model and monitor WWTPs (Huo et al.,
2005; Novotny et al., 1991; Capodaglio et al., 1992). Other approaches
used latent variable (LV) methods, such as PCA and projection latent
structures (PLS), for monitoring and predicting parameters of the in-
fluent and effluent of WWTPs. Amaral and Ferreira (2005) applied a
PLS regression for activated sludge process (ASP) monitoring. PLS
methods have been applied to predict the deterioration of sludge se-
dimentation properties by monitoring the parameters affecting effluent
quality and filamentous bulking in ASPs (Mujunen et al., 1998). PCA
and its extensions have been widely used for statistical modeling and
monitoring of WWTPs (Liu et al., 2014; Huang et al., 2012; Villez et al.,
2008; Lee et al., 2004; Rosén and Lennox, 2001; Lee and Vanrolleghem,
2003).

The main objective of this paper is to enhance the operation and
performance of WWTPs through the development of an innovative
monitoring strategy. This paper presents a flexible and efficient fault-
detection approach based on deep learning to monitor WWTPs. A fault
detection strategy capable of dealing with the complex nonlinear dy-
namics of WWTPs has been proposed. This approach integrates a deep
belief network (DBN) model and a one-class support vector machine
(OCSVM), and simultaneously takes advantage of the powerful feature-
extraction capability of DBNs and the superior predicting capacity of
OCSVM. The DBN model, which is a powerful tool with greedy learning
features, accounts for the nonlinear aspects of WWTPs, while OCSVM
reliably detects the faults in a WWTP dataset. The DBN model, which
consists of multiple layers of restricted Boltzmann machines (RBMs), is
built via unsupervised greedy layer-wise training using the data col-
lected from a WWTP. Here, WWTP monitoring is addressed as an
anomaly-detection problem based on the one-class support vector ma-
chine (OCSVM) classifier, trained unsupervised on fault-free data ob-
tained from the DBN model. The central role of the OCSVM classifier is
to separate fault-free from faulty data by building a hyperplane. We test
the proposed DBN-OCSVM method on practical data collected from a
pilot-scale membrane bioreactor (MBR) at the Mines Park Water
Reclamation Test Site, a decentralized wastewater treatment facility in
Golden, CO.

The remainder of this paper is organized as follows. Section 2 gives

a brief overview of machine-learning generative models and the
OCSVM algorithm. In Section 3, the proposed DBN-OCSVM fault-de-
tection approach is presented. In Section 4, the performances of the
proposed methods are illustrated in a real data application, and Section
5 concludes with a discussion.

2. Preliminary material

Over the past two decades, several approaches to fault detection
based on shallow learning have been investigated, such as training
different classifiers by support vector machines (SVM), AdaBoost, and
neural networks in supervised learning with one or two layers (Jabeen
et al., 2017; Raduly et al., 2007; Ribeiro et al., 2013). However,
shallow-learning approaches are not suitable for representing de-
pendencies among multiple variables, are inefficient when dealing with
high-dimensionality data, and have a limited ability to model complex
functions, leading to unsuitable generalized models. To overcome these
limitations, deep-learning approaches have been developed. In a deep-
learning approach, several layers are stacked to describe complex
functions (Hinton, 2012). In other words, the output of each layer re-
presents the input of the next layer. Using this structure, the classifi-
cation and learning of complex input information can be achieved.
Restricted Boltzmann machines and deep belief networks are powerful
deep architectures that overcome most of shallow-learning limitations
(Hinton and Salakhutdinov, 2006; Hinton, 2007; Bengio, 2009). In this
section, a brief overview of these two models is presented.

2.1. Restricted Boltzmann Machines (RBMs)

RBMs are stochastic neural networks (Smolensky, 1986) (see Fig. 1)
that consist of m visible units ( ∈v {0,1}m) and n hidden units
( ∈h {0,1}n). There are no visible-to-visible or hidden-to-hidden con-
nections, although v and h are fully connected (see Fig. 1). These
models are trained using contrastive divergence learning procedure
based on Gibbs sampling (Hinton, 2012). The learning procedure is
comprised of many Gibbs sampling steps (propagate: sample hidden
given visibles; reconstruct: sample visible given hidden; repeat) and
selecting the weights with the minimum reconstruction error
(Salakhutdinov and Hinton, 2009; Bengio, 2009; Hinton et al., 2006).

RBMs are particularly energy-based models and have been used as
generative models for several types of data (Bengio, 2009), such as text,
speech, and images. The energy of join configuration is defined by
(Mohamed et al., 2012):
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where Wij is the weight matrix between the visible variable vi and the

Fig. 1. Schematic presentation of a restricted boltzmann machine (RBM). Left: A general Boltzmann machine. Right: An RBM with no visible-to-visible or hidden-to-
hidden connections.
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