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dielectric are studied simultaneously. Significant threshold voltage shift AVqy, degradation of the sub-
threshold swing S.S. and transconductance Gy, are observed for both n-type LTPS-TFTs after PBTI stress
and p-type LTPS-TFTs after NBTI stress. Moreover, the G, degradation rate with the stress time of p-
type devices during NBTI shows significantly different behavior from the PBTI of n-type devices. The

fg‘;i‘_}mnfs PBTI of n-type device shows a saturation behavior of the G, degradation with various stress bias and
HfO, temperature. Conversely, the NBTI of p-type device shows an enhanced G, degradation rate with the
PBTI increase of stress time and stress temperature. In addition, the threshold voltage shift |AVry| of PBTI does
NBTI not obey the traditional empirical power law model, but the NBTI obeys it with higher time exponent.
Reliability Consequently, the NBTI of the p-type device shows worse driving current I4, degradation than the
PBTI of the n-type device mainly due to the different G, degradation behavior.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction dielectric are investigated to observe the degradation behavior

and find out the improvement feasibility for the development of
Low-temperature poly-Si thin-film transistors (LTPS-TFTs) have SOP and 3D-IC.
been widely studied for the application of active matrix liquid crys-
tal display [1], organic light-emitting diode display [2], system-on-
panel (SOP) and 3D integrated circuit (3D-IC) [3-5]. The employ- 2. Experimental procedure

ment of high-k gate dielectric is a simple way to achieve high elec-
trical performance of LTPS-TFTs without any additional defect The CMOS LTPS-TFTs were fabricated on Si substrates capped
passivation process due to its high gate capacitance density [6-  with 500-nm-thick wet oxide. A 50-nm undoped amorphous-Si
8]. Among many high-x materials, the HfO,-based materials have  film was deposited at 550°C in a low-pressure chemical vapor
been adopted as the gate dielectric of advanced complementary  deposition system, followed by annealing at 600 °C for 24-h to
metal-oxide-semiconductor (CMOS) field-effect transistors in  form poly-Si. Then, a 300-nm SiO, film was deposited by plasma-
very_]arge_sca]e integration industry beyond 45-nm node technol- enhanced chemical vapor deposition at 300 °C for device isolation.
ogy [9-11]. However, the reliability of transistors with high-k gate ~ The device active region was created by patterning and etching the
dielectric is a crucial issue because of the poor high-i/Si interface ~ isolation oxide. The source and drain (S/D) regions in the active
and trap states in the high-x film [12,13]. Therefore, the negative device region were defined by implantation with phosphorus
and positive bias temperature instabilities (N/PBTI) are very impor- 15 keV, 5 x 10" cm™? for n-type device and with boron 10 keV,
tant for the development of CMOS transistors with high-k gate 5 x 10" cm™? for p-type device. The S/D dopants were activated
dielectric [14]. Nevertheless, the NBTI behavior of p-type LTPS- at 600 °C for 24-h. Then, a 60-nm HfO, with effective oxide thick-
TFTs and the PBTI behavior of n-type LTPS-TFTs with high-k gate =~ ness EOT ~ 12-nm was deposited by a physical vapor deposition
dielectric have not been simultaneously studied and compared. ~ (PVD) system at room temperature. After the patterning of S/D
In this paper, the BTI issues of CMOS LTPS-TFTs with HfO, gate contact holes, aluminum was deposited by PVD as the gate and
S/D contact electrodes. Finally, the TFT devices were completed
by the contact pad definition. The n- and p-type LTPS-TFTs are fab-
* Corresponding author. Tel.: +886 7 5252000x4194; fax: +886 7 5254199. ricated on the same wafer. The threshold voltage Vry of n-type and
E-mail address: williammaa@mail.ee.nsysu.edu.tw (W.C.-Y. Ma). p-type LTPS-TFTs are denoted by Vryy, and Vryp, respectively. They
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are defined as the gate voltage at which the drain current reaches
10 nA x W/L and |Vp| = 0.1 V. The driving current I, is defined as
the drain current at Vg — Viyn = Vp =4V for n-type device and V -
— Viup = Vp=—4V for p-type device. The electrical measurements
are carried out in air by using an Agilent B1500A precision semi-
conductor parameter analyzer.

3. Results and discussion

The transfer characteristics (Ip-V¢ curves) and transconduc-
tance G, behavior of CMOS LTPS-TFTs under NBTI at Vg — Vryp = -
—4V for p-type device and PBTI at Vg — Vg, = 4 V for n-type device
with different stress time at T=75 °C are shown in Figs. 1 and 2,
respectively. Significant threshold voltage increase |AVry|~
1.618 V of PBTI and ~1.006 V of NBTI is observed. The threshold
voltage shift AVyy is defined as the (Vrpngatter stress) — Vrin(before
stress)) for n-type device and (VTHp(after stress) — VTHp(before stress)) for
p-type device. In addition, serious subthreshold swing S.S. degra-
dation are also observed that AS.S. =149 mV/decade for n-type
device and AS.S. =121 mV/decade for p-type device as shown in
Fig. 1. The degradation of subthreshold swing S.S. is attributed to
the generation of the interface trap states N;, of HfO,/poly-Si
[15-19], which both NBTI and PBTI could degrade the HfO,/poly-
Si interface. In addition, the increase of threshold voltage |AVry|
can be attributed to not only the degradation of subthreshold
swing S.S. but also the oxide charge trapping in HfO, [19]. The flat-
band voltage shift |[AVgg| of the LTPS-TFTs with undoped poly-Si
channel can be used to monitor the threshold voltage shift |AVry|
by the oxide charge trapping, which the flatband voltage Vg is
defined as the gate voltage yielding the minimum drain current
from the transfer characteristics Ip-Vg curve [16]. As shown in
Fig. 1, the flatband voltage shifts |AVgg| of PBTI for n-type device
and NBTI for p-type device are around 1.0V and 0.45V, respec-
tively. It indicates the electron trapping of PBTI for n-type device
is more serious than the hole trapping of NBTI for p-type device,
resulting in the main difference of threshold voltage shift |AVry|
between PBTI and NBTIL.

In addition to the threshold voltage shift |AVyy| and the sub-
threshold swing S.S. degradation, the significant difference
between NBTI of p-type device and PBTI of n-type device is the
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transconductance G, degradation behavior as shown in Fig. 2.
The transconductance G, degradation under NBTI of p-type device
is much worse than the PBTI of n-type device, and the G, degrada-
tion of PBTI shows a saturation behavior that NBTI doesn’t. In order
to confirm this different transconductance G, degradation behav-
ior of N/PBTI, several stress voltage conditions Vg — Vg, =3 -
V~5Vand Vg — Viyp=—-3V ~ -5V are executed and the results
are shown in Fig. 3(a) and (b). Obviously, higher stress voltage of
BTI condition results in more transconductance G,, degradation,
but the PBTI of n-type device still shows the saturation behavior
of transconductance G,, degradation around 50 s to 100 s of stress
time for all stress voltage at T = 75 °C. Conversely, the transconduc-
tance G, degradation of NBTI for p-type device doesn’t be satu-
rated with the stress time. Various stress temperatures are also
executed and the results are shown in Fig. 4(a) and (b). Higher tem-
perature of PBTI for n-type device shows more transconductance
G, degradation and later saturation time of G, degradation, and
the NBTI of p-type device shows much enhanced degradation rate
with the increased temperature. The transconductance G, of poly-
Si TFTs is strongly related to the tail-trap states located near the
band edge of poly-Si in the HfO,/poly-Si interface and the grain
boundaries of poly-Si near the surface conduction channel [16-
19]. The saturated G, degradation of PBTI of n-type device indi-
cates the generation of tail-trap states near the conduction band
by PBTI is saturated, and the continuous G, degradation of NBTI
for p-type device indicates the generation of tail-trap states near
the valence band by NBTI is enhanced. In addition, the subthresh-
old swing S.S. of poly-Si TFTs is strongly related to the deep-trap
states located near the midgap of poly-Si in the HfO,/poly-Si inter-
face and the grain boundaries of poly-Si near the surface conduc-
tion channel [16-19]. Although the transconductance Gy,
degradation of PBTI for n-type device shows a saturated behavior,
the subthreshold swing S.S. degradation of PBTI doesn’t, which is
shown in Fig. 5. It indicates the generation behavior of tail-trap
states and deep-trap states during the stress time of PBTI for n-
type device are not equal. The generation of tail-trap states can
be saturated and the generation of deep-trap states can’t.

The threshold voltage shift |AVqy| of BTI is generally extracted
and empirically modeled as following power law equation [20]:

|AVy|oc £ exp(—Ea/KT) exp(qaEqy /KT) (1)
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Fig. 1. The transfer characteristics of CMOS LTPS-TFTs under NBTI for p-type devices and PBTI for n-type devices with different stress time.
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