FLSEVIER

Contents lists available at ScienceDirect

Journal of Environmental Management

journal homepage: www.elsevier.com/locate/jenvman

Research article

A systematic comparison of two empirical gas-liquid mass transfer determination methodologies to characterize methane biodegradation in stirred tank bioreactors

Raul Muñoz ^{a, b}, Cenit Soto ^a, Cristal Zuñiga ^a, Sergio Revah ^{a, *}

^a Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Unidad Cuajimalpa, Avenida Vasco de Quiroga 4871, Col. Santa Fe

Cuajimalpa. Delegación Cuajimalpa de Morelos, Ciudad de México, Mexico

^b Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain

ARTICLE INFO

Article history: Received 29 January 2018 Received in revised form 18 March 2018 Accepted 22 March 2018

Keywords: Biological gas treatment Greenhouse gas CH₄ Suspended growth bioreactor Volumetric mass transfer coefficient

1. Introduction

The assessment of current global greenhouse gas (GHG) emissions based on the 1-year pulse emission analysis has confirmed that CH₄ entails a contribution in terms of global warming potential (GWP) or global temperature change potential comparable to that of CO₂ for short time horizons (IPCC, 2013). This fact can be attributed to the high GWP of CH₄ (90 and 72 on a 10 and 20 years horizon, respectively) (Dessus et al., 2009). However, despite the environmental relevance of CH₄ emissions, the development of cost-efficient and environmentally friendly treatment technologies (especially of those intended for the treatment of diluted emissions where no energy recovery is technically feasible) has been scarce. Today, physical/chemical CH₄ abatement technologies, such as activated carbon adsorption and incineration, are either inefficient or costly at the low concentrations typically found in emissions from waste treatment facilities (except young landfills), mines and animal farms, and possess a large CO₂ footprint as a result of their

Corresponding author.
 E-mail address: srevah@correo.cua.uam.mx (S. Revah).

ABSTRACT

This study aimed at systematically comparing the potential of two empirical methods for the estimation of the volumetric CH₄ mass transfer coefficient (k_la_{CH4}), namely gassing-out and oxygen transfer rate (OTR), to describe CH₄ biodegradation in a fermenter operated with a methanotrophic consortium at 400, 600 and 800 rpm. The k_la_{CH4} estimated from the OTR methodology accurately predicted the CH₄ elimination capacity (EC) under CH₄ mass transfer limiting conditions regardless of the stirring rate (~9% of average error between empirical and estimated ECs). Thus, empirical CH₄-ECs of 37.8 ± 5.8, 42.5 ± 5.4 and 62.3 ± 5.2 g CH₄ m⁻³ h⁻¹ vs predicted CH₄-ECs of 35.6 ± 2.2, 50.1 ± 2.3 and 59.6 ± 3.4 g CH₄ m⁻³ h⁻¹ were recorded at 400, 600 and 800 rpm, respectively. The rapid Co²⁺-catalyzed reaction of O₂ with SO₃⁻² in the vicinity of the gas-liquid interphase during OTR determinations, mimicking microbial CH₄ uptake in the biotic experiments, was central to accurately describe the k_la_{CH4} .

© 2018 Elsevier Ltd. All rights reserved.

intensive energy use (Estrada et al., 2012; Melse and Van Der Werf, 2005).

Biological methods represent an environmentally friendly alternative to physical/chemical methods for the abatement of CH₄. Biotechnologies, which rely on the biocatalytic action of specialized microorganisms, have been consistently proven as robust and efficient methods for the treatment of malodorous and industrial volatile organic compounds, exhibiting lower operating costs and environmental impacts than their physical/chemical counterparts (Estrada et al., 2012; Ferdowsi et al., 2017; Lopez et al., 2014). However, the cost-efficient application of conventional biotechnologies such as biofiltration or biotrickling filtration for the abatement of CH₄ is often limited by the poor mass transfer of this GHG from the gas emission to the methanotrophic community. This entails the need for large gas residence times (0.1-10 h), and therefore large bioreactor volumes and investment costs, which typically jeopardizes the economics of CH₄ abatement (Lopez et al., 2013). In this context, the bioconversion of CH₄ into added-value products in stirred tank bioreactors represents a promising alternative to enhance the economic sustainability of CH₄ abatement (Garcia-Perez et al., 2018; Karthikeyan et al., 2015; Pieja et al., 2012). Indeed, CH₄ can be bioconverted into biopolymers, ectoine,

protein, exopolysaccharides, etc., using a biorefinery approach (Cantera et al., 2017). The development of cost-competitive CH₄ biorefineries, inherently limited by CH₄ supply to the microbial community, requires the development of accurate methodologies for the characterization of CH₄ gas-liquid mass transfer in conventional fermenters (Cantera et al., 2017). Unfortunately, the validation of empirical methodologies for the determination of the volumetric CH₄ mass transfer coefficient ($k_{l}a_{CH4}$) has been poorly addressed in literature (García-Ochoa and Gomez, 2009; Rocha-Ríos et al., 2010). Indeed, the lack of cheap and reliable dissolved CH₄ sensors along with the low solubility and limited industrial interest of CH₄ to date have restricted the development of accurate methodologies for the characterization of $k_{l}a_{CH4}$. Table S1 presents the main studies devoted to the characterization of the volumetric CH₄ mass transfer coefficients in bioreactors.

This study aims at comparing and validating, for the first time, two experimental methodologies for the estimation of $k_{l}a_{CH4}$ (gassing-out *vs* oxygen transfer rate methods) in order to accurately describe CH₄ abatement in a stirred tank reactor operated with a methanotrophic consortium at multiple stirring rates. This information is expected to provide the basis for a correct bioreactor design for CH₄ bioconversion into added-value products.

2. Material and methods

2.1. Microorganism and mineral salt medium

A mixed methanotrophic bacterial consortium containing *Sphingobacterium* sp. CZ-UAM (GenBank KJ411920) was used for CH₄ biodegradation purposes (Steffani-Vallejo et al., 2017). The consortium was enriched from the UAM-Iztapalapa wastewater treatment plant (México City). The composition of the mineral salt medium (MSM) used in the experiments was as follows (g l⁻¹): K₂HPO₄ 0.7, KH₂PO₄ 0.54, MgSO₄·7H₂O 1, CaCl₂·2H₂O 0.2, FeS-O₄·7H₂O 0.004, NH₄CL 0.5, ZnSO₄·7H₂O 0.1, MnCl₂·4H₂O 0.03, H₃BO₃ 0.3, CoCl₂·6H₂O 0.2, CuCl₂·2H₂O 0.01, NiCl₂·6H₂O 0.02 and NaMoO₄·2H₂O 0.06 (ATCC medium 1683). All chemicals were purchased from Sigma-Aldrich (USA). CH₄ (99.9%) was obtained from Praxair (Mexico).

2.2. Determination of the volumetric CH₄ mass transfer coefficient

A 3.5 L *ez*-control fermenter (Applikon, The Netherlands) equipped with two rushton turbines and containing 2.5 L of MSM was used for the determination of the volumetric mass transfer coefficient of O_2 (k_la_{02}) using the gassing-out and the oxygen transfer rate (OTR) methods (Quijano et al., 2009; Estrada et al., 2014). The k_la_{02} was recorded at an aeration rate of 0.42 L min⁻¹ under three stirring rates (400, 600 and 800 rpm) at 30 °C. These aeration rates were selected as potential operational conditions implemented in large-scale fermenters devoted to the bioconversion of CH₄.

In the gassing-out method, the MSM was initially degassed inside the fermenter for 15 min with argon at $0.42 \, \text{L}\,\text{min}^{-1}$ at the corresponding stirring rate (to complete dissolved O_2 depletion) and the dissolved O_2 concentration (DO) was then recorded every 5 s following the initiation of the aeration. The tests were carried out in duplicate using both polarographic and luminescent/optical dissolved O_2 sensors calibrated before each experimental series. The $k_{l}a_{O2}$ (h⁻¹) was determined using equation (1):

$$k_{l}a_{02} = -ln \left(\frac{C_{0_{2}L}^{*} - C_{0_{2},L}}{C_{0_{2}L}^{*} - (C_{0_{2},L})_{0}} \right) / t$$
(1)

where $C_{0_2L}^*$ stands for the dissolved O₂ concentration at saturation (6.75 mg L⁻¹ at Mexico city at 30 °C), $C_{0_2,L}$ the dissolved O₂ concentration at time *t*, and $(C_{0_2,L})_0$ the dissolved O₂ concentration at the beginning of the test (DO = 0 mg L⁻¹ at *t* = 0 s, since the cultivation broth was initially degassed with argon). In addition, a similar test series as above described was conducted with MSM supplemented with 0.03 M Na₂SO₃.

The OTR (g L⁻¹ h⁻¹) from the gas phase to the MSM was estimated (in duplicate) by periodically monitoring the time course of SO_3^{-2} oxidation in the fermenter according to Quijano et al. (2009). The bioreactor was initially filled with 2.5 L of MSM containing sodium sulfite at 0.03 M and aerated for 30 min prior to the test. The kinetics of O₂ absorption were recorded after the addition of the catalyst (5 ml of a 2.5 × 10⁻⁴ M CoSO₄ solution, which supports an instantaneous SO_3^{-2} oxidation) until complete SO_3^{-2} depletion according to equation (2).

$$SO_3^{2-} + 0.5 O_2 \xrightarrow{Co^{2+}} SO_4^{2-}$$
 (2)

Aqueous samples of 5 mL were drawn from the bulk phase of the fermenter and SO_3^{-2} concentration was determined by iodometric back-titration according to Zhao et al. (1999). The $k_{l}a_{02}$ was determined using equation (3):

$$k_{1}a_{02} = \frac{OTR}{\frac{C_{0_{2},c}}{H_{02}} - C_{0_{2},L}}$$
(3)

where OTR is calculated from the slope of the absorbed O₂ concentration (estimated from the SO_3^{-2} concentration multiplied by the O₂/SO₃²⁻ stoichiometric coefficient derived from equation (3)) versus time plot, H_{02} stands for the dimensionless Henry law constant of O₂ (30.9 at 30 °C) and C_{O2,G} represents the gas O₂ concentration in the exhaust gas (Zhao et al., 1999). Finally, the volumetric mass transfer coefficient of CH₄ was estimated from $k_{l}a_{O2}$ according to Yu et al. (2006) using the correlation empirically validated for stirred tank reactors based on dissolved CH₄ measurements and a dynamic methodology to characterize $k_{l}a_{O2}$ (equation (4)):

$$k_l a_{CH4} = \frac{k_l a_{O2}}{1,16} \tag{4}$$

2.3. Determination of the influence of the stirring rate on CH₄ elimination capacity

The 3.5 L *ez*-control fermenter equipped with two rushton turbines was initially filled with 2.5 L of MSM and inoculated with the bacterial consortium. The bioreactor was continuously supplied with a CH₄-laden air emission (0.42 L min⁻¹) at a CH₄ concentration of 26.9 \pm 1.7 g m⁻³ and Cu-supplemented MSM (50 µg L⁻¹ of CuSO₄) at a dilution rate of 0.12 d⁻¹. The temperature and pH of the cultivation broth were automatically controlled at 30 °C and 7, respectively. The system was initially operated for 60 days at 800 rpm to reach a steady state biomass concentration of 2.5 \pm 0.4 g L⁻¹ in order to prevent process limitation by microbial activity. The influence of the stirring rate (800, 600 and 400 rpm) on the CH₄ elimination capacity (EC) was evaluated by monitoring the inlet and outlet CH₄ gas concentration (C_{CH4,in} and C_{CH4,out}, respectively) for at least 7 consecutive days at each stirring rate. The EC was calculated according to equation (5):

$$EC = \frac{C_{CH4,in} - C_{CH4,out}}{C_{CH4,in}}$$
(5)

Download English Version:

https://daneshyari.com/en/article/7477180

Download Persian Version:

https://daneshyari.com/article/7477180

Daneshyari.com