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a b s t r a c t

Water quality data at gaging stations are typically compared with established federal, state, or local water
quality standards to determine if violations (concentrations of specific constituents falling outside
acceptable limits) have occurred. Based on the frequency and severity of water quality violations, risk
metrics such as reliability, resilience, and vulnerability (R-R-V) are computed for assessing water quality-
based watershed health. In this study, a modified methodology for computing R-R-V measures is pre-
sented, and a new composite watershed health index is proposed. Risk-based assessments for different
water quality parameters are carried out using identified national sampling stations within the Upper
Mississippi River Basin, the Maumee River Basin, and the Ohio River Basin. The distributional properties
of risk measures with respect to water quality parameters are reported. Scaling behaviors of risk mea-
sures using stream order, specifically for the watershed health (WH) index, suggest that WH values
increased with stream order for suspended sediment concentration, nitrogen, and orthophosphate in the
Upper Mississippi River Basin. Spatial distribution of risk measures enable identification of locations
exhibiting poor watershed health with respect to the chosen numerical standard, and the role of land use
characteristics within the watershed.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Clean drinking water is not only essential for human health,
good water quality is important for avoiding coastal eutrophication
and ocean acidification, and for maintaining healthy riverine, ma-
rine, and coastal ecosystems which is one of the 17 goals of United
Nation's Sustainable Development Goals 2015e2030. Risk-based
assessments have been used by water resources planners for
characterizing reservoirs (Hashimoto et al., 1982; Moy et al., 1986;
Vogel and Bolognese, 1995; Jain and Bhunya, 2008) and urban-
water distribution networks (Mondal et al., 2010). Risk analyses
have also been popularly used in water quality assessment (Maier
et al., 2001; Hoque et al., 2012, 2013, 2014, 2016), evaluating the
impact of climate change on water resources systems (Asefa et al.,
2014; Fowler et al., 2003; Mondal and Wasimi, 2007), hydrologi-
cal impact of rain water harvesting systems (Glendenning and
Vervoort, 2011) and for drought characterization (Maity et al.,

2012). The risk measures that are commonly computed in most
risk analyses are reliability, resilience and vulnerability (R-R-V).
Reliability is the probability that the system is in compliance at a
given time with respect to user specified water quality standard;
resilience is defined as the probability of the system to recover to a
compliant state given that it was non-compliant the previous time
step; and vulnerability is a measure of the average severity of
damage during a non-compliant event. While reliability and resil-
ience have probabilistic definitions, vulnerability is often used to
quantify the average magnitude of damage caused during a failed
(or catastrophic) event. As a result, previously used vulnerability
measures have not been comparable to reliability and resilience. In
this study we introduce an objective framework for computing a
vulnerability metric in water quality risk assessment that is
dimensionless and ranges between zero to one. Though the pro-
posed definition is not truly a probability measure, it nevertheless
has distributional properties. We also propose a composite water
quality-based watershed health measure that describes the overall
health of the watershed with respect to any chosen water quality
constituent. By definition, the composite watershed health mea-
sure also scales between zero and one, with one indicating a very
healthy watershed and vice-versa.
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Since risk measures are computed at USGS stations located along
the stream network, they may follow scaling laws. Scaling laws have
been a popular topic in watershed hydrology. Specifically, Horton's
scaling laws (Horton, 1945) provided valuable insights into the hi-
erarchical organizational structure of stream networks within wa-
tersheds. These laws also provided an understanding on how the
physical properties of streams (e.g. flow characteristics, slope, etc.)
would change as a function of spatial scale. Building on this, Strahler
(1952, 1957) and Shreve (1966) popularized the concept of stream
orders where numbers are assigned to stream reaches based on their
hierarchies. Streams that are farthest from thewatershed outlet have
lowest stream orders, and those that are closest to the outlet have
higher stream orders. While some researchers have highlighted the
limitations of stream orders and proposed modifications (Peckham
and Gupta, 1999; Gangodagamage et al., 2011), others have pro-
posed alternative approaches to scaling analysis (Rigon et al., 1996;
Betz et al., 2010; Zaliapin et al., 2010; Gangodagamage et al., 2011).
Because of its simplicity, stream order continues to be used in many
scaling studies (King et al., 2005; Vondracek et al., 2005; Hoque et al.,
2014). For example, Hoque et al. (2014) investigated the scaling
behavior of watershed risk measures over four study watersheds in
the U.S.Midwest using the Soil&Water Assessment Tool (SWAT) and
two scaling measures e contributing upland area and stream order.
Their study focused on finding the effective stream order threshold
that would yield stable risk measures; however, additional research
is needed using measured streamflow data across large river basins.

In this study we investigated scaling laws using actual stream-
flow measurements within large river basins. Stream order and
drainage density were considered as candidate scaling measures.
Drainage density is defined as the ratio of total length of streams
within a drainage basin divided by the total drainage area; i.e. it
provides a measure of how well existing streams drain a basin. We
specifically ask the following questions:What are the distributional
properties of these risk measures, and are the means of these risk
measures similar at stations of the same stream order or those that
have the same drainage density? Do risk measures of reliability,
resilience and newly-defined vulnerability increase (or decrease) as
we move downstream (lower stream order to higher stream order)
or how are they related to different values of drainage density, i.e.
do they follow popular scaling laws within large river systems?

We further investigate the spatial distribution of risk measures
over large river basins as a prelude to identifying potential source
areas. We relate the spatial distribution of risk measures with
dominant land use type of each drainage area. Such a comparison
allows us to identify land use categories that influence risk mea-
sures for different water quality parameters. Mann-Kendall trend
test and Sen's slope (Kendall, 1948; Sen, 1968; Hirsch, 1982; Hamed
and Ramachandra Rao, 1998) are used to identify influences that
are statistically significant. These insights can serve as a useful
guide for watershed risk assessment and for implementing useful
management plans.

2. Study area

The Upper Mississippi River Basin (UMRB), the Ohio River Basin
(ORB), and the Maumee River Basin (MRB) were chosen as the study
area. The stateswithin theUMRB studyarea includeMinnesota (MN),
Wisconsin (WI), Iowa (IA), Illinois (IL), andparts ofMissouri (MO). The
UMRB has dominant agricultural land use (64%) and drains into Gulf
of Mexico. The ORB is spread over states of Indiana (IN), Ohio (OH),
Kentucky (KY), and parts of Illinois (IL), Tennessee (TN), Pennsylvania
(PA), West Virginia (WV), and New York (NY). It has dominant forest
land use (46%) followed by agricultural land use (44%) and drains into
the Mississippi River and ultimately into the Gulf of Mexico. Due to
intensive agricultural activities that involve application of fertilizers,

both UMRB andORB are considered to be among the primary sources
of nutrients that reach theGulf andcause eutrophication (Burkart and
James, 1999; Alexander et al., 2008). The MRB is the largest Great
Lakes watershed, draining all or parts of 17 Ohio (OH) counties, two
Michigan (MI) counties and five Indiana (IN) counties into Maumee
Bay and then to Lake Erie just east of Toledo, Ohio. The MRB is agri-
culturally intensive (53%) and the nutrients that get washed off from
this river basin cause algal blooms in Lake Erie during the summer
months (Michalak et al., 2013).

A total of 214 USGS stations (Fig. 1) - 57 stations in UMRB, 99 sta-
tions inORB,and58stations inMRBwithavailablewaterquality (WQ)
data were identified over the study area. The U. S. Geological Survey
(USGS, http://waterdata.usgs.gov/nwis/rt) daily streamflow dataset
was utilized. In general, streamflow data are subjected to human
interference, and therefore data contain both natural and regulated
flows. Only unregulated stations were included in this study.

The U. S. Geological Survey (USGS, goo.gl/K1Th9D) daily water
quality dataset and the USGS National Water Quality Assessment
(NAWQA, goo.gl/Wq5dYi) data warehouse were used to collect
chemical, biological and physical water quality data for the study
area where available. We have a total of 151 stations with Sus-
pended Sediment Concentration data (parameter code 80154), 70
stations with NitrateþNitrite data (parameter code 00631), and 49
stations with Orthophosphate data (parameter code 00671). These
parameters were chosen based on the number of sampling stations
with minimum 30 observations over the study period (1966 to
current depending on data availability). The threshold of 30 ob-
servations was chosen to ensure a statistically robust model during
reconstruction of the WQ time series.

3. Methodology

While daily continuous records of streamflow data were avail-
able over the study area, water quality data are discontinuous in
time. Using the data reconstruction method proposed in Hoque
et al. (2012) water quality data at all stations were reconstructed
as a function of daily streamflow measurements available at those
stations using relevance vector machines (RVM; Bishop, 2006;
Sch€olkopf and Smola, 2002; Tipping, 2001). Let Xt be the daily
reconstructed time series of a water quality parameter with stan-
dard numerical target X*. We then define compliance ðSÞ and
noncompliance states ðFÞ as:

S : fXt � X*g is compliance state (Xt > X*, e.g., for Dissolved
Oxygen)
F : fXt >X*g is noncompliance state (Xt � X*, e.g., for Dissolved
Oxygen)

A compliance event is one where the reconstructed water
quality data is below (or above in case of Dissolved Oxygen or DO)
the standard numerical target for one or more successive days, and
is noncompliant otherwise. Then using the definitions of risk
measures given by Hashimoto et al. (1982) and Hoque et al. (2012),
reliability ðpÞ is defined as the probability of the system to be in
compliant state. Mathematically it can be written as

p ¼ 1� PfXt2Fg ¼  1� 1
n

Xn
t¼1

zt (1)

where zt¼ 1 when Xt2F and 0 when Xt2S, and n is the total
number of data points.

Similarly, resilience ðrÞ is defined as the probability of the sys-
tem to recover from a non-compliance state and can be mathe-
matically written as below:
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