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Evaluating statistical model performance in water quality prediction
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a b s t r a c t

Exposure to contaminated water while swimming or boating or participating in other recreational ac-
tivities can cause gastrointestinal and respiratory disease. It is not uncommon for water bodies to
experience rapid fluctuations in water quality, and it is therefore vital to be able to predict them accu-
rately and in time so as to minimise population's exposure to pathogenic organisms. E. coli is commonly
used as an indicator to measure water quality in freshwater, and higher counts of E. coli are associated
with increased risk to illness. In this case study, we compare the performance of a wide range of sta-
tistical models in prediction of water quality via E. coli levels for the weekly data collected over the
summer months from 2006 to 2014 at the recreational site on the Oreti river in Wallacetown, New
Zealand. The models include naive model, multiple linear regression, dynamic regression, regression
tree, Markov chain, classification tree, random forests, multinomial logistic regression, discriminant
analysis and Bayesian network. The results show that Bayesian network was superior to all the other
models. Overall, it had a leave-one-out and k-fold cross validation error rate of 21%, while predicting the
majority of instances of E. coli levels classified as unsafe by the Microbiological Water Quality Guidelines
for Marine and Freshwater Recreational Areas 2003, New Zealand. Because Bayesian networks are also
flexible in handling missing data and outliers and allow for continuous updating in real time, we have
found them to be a promising tool, and in the future, plan to extend the analysis beyond the current case
study site.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Degraded water quality can be harmful to human health.
Moreover, exposure to contaminated water via recreational use
including swimming can result in individual illness and community
outbreaks of gastrointestinal and respiratory disease (Fewtrell and
Kay, 2015; Bridle, 2014; Soller et al., 2010; Yoder et al., 2008; Prüss,
1998). A consequence of these outbreaks can put unwanted pres-
sure on health services and lead to financial losses both to the in-
dividual households, the regional and national economy (Bridle,
2014; Hunter et al., 2009; Given et al., 2006; Gleick, 2002). For
these reasons, regulatory authorities manage risk by establishing
guidelines for water quality to be monitored by responsible
authorities.

The microbiological quality of recreational water is monitored
via the presence of indicator bacteria. Annette Pruss reviewed 37
epidemiological studies on health effects from exposure to recre-
ational water, and found that most studies reported a positive
statistically significant association between the indicator-bacteria
count in recreational waters and health risk in swimmers (Prüss,
1998). For freshwater, the indicator microorganisms that correlate
best with health outcomes were Escherichia coli (E. coli), which is a
type of fecal coliform that is used to measure the level of pollution
(Odonkor and Ampofo, 2013). The presence of E. coli in recreational
waters indicates fecal contamination which coincides with the
presence of pathogenic microorganisms. Another systematic re-
view of over 900 studies by (Wade et al., 2003) found that E. coli
was a more consistent predictor of gastrointestinal illness than
enterococci and other bacterial indicators. Although the result was
not statistically significant, they found that a log (base 10) unit
increase in E. coli count was associatedwith an average 2.12 (95% CI,
0:925;4:85) increase in relative risk in fresh water. Since E. coli is
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found in all mammal and bird faeces, higher concentrations mean
an increased risk of presence of other pathogens (Sampson et al.,
2006; Winfield and Groisman, 2003; Edberg et al., 2000).

To ensure the risk from recreational water is minimised for the
public, many governments and groups have implemented water
quality standards, such as theWHOGuidelines for Safe Recreational
Water Environments (World Health Organization, 2003) and the
revised European Union Bathing Water Directive 2006. These reg-
ulatory tools require recreational sites to be monitored with a
minimum of one monthly sample taken during the bathing season
with the results of the monitoring then disclosed to the public. The
responsible governmentmust then describe their riskmanagement
measures in relation to predictable short term pollution or
abnormal events (European Parliament, 2006).

Freshwater management units (FMUs) are fresh water catch-
ments that have been set up by New Zealand regional councils in
order to set freshwater objectives and limits for freshwater quality.
FMUs can be grouped according to their physical characteristics as
well as their social significance, i.e. who are their main users and
what purpose are they used for (Ministry for the Environment,
2015). In New Zealand, the Microbiological Water Quality Guide-
lines for Marine and Freshwater Recreational Areas 2003 outlines
the acceptable water quality for locations (FMU) designated for
recreational use, where surveillance of water quality is carried out
on a regular basis. These guidelines state the degree of surveillance
required and if public disclosure of the water quality is required to
be given based on a surveillance mode; Acceptable, Alert and Ac-
tion (Green, Amber and Red). These modes are assigned to each
location based on the reported E. coli concentration, see Table 2
(Ministry for the Environment, 2002). Acceptable/Green is
defined to be generally safe for activities such as swimming and to
continue routine surveillance. Alert/Amber means an increase in
E. coli levels and sampling to be done on a daily basis and to refer to
the Catchment Assessment Checklist (CAC), which is included in
the aforementioned guide, to assist in identifying possible loca-
tion(s) of sources of fecal contamination. Action/Red means that
high levels of E. coli have been found and there is an increased risk
to infection. The associated action plan for mode Alert/Red required
to be undertaken follow the same steps as Alert/Amber with the
addition of a sanitary survey with a report on sources of contami-
nation, warning signs erected and public disclosure of a public
health problem. Hence, it is especially important to distinguish Red
days from the others.

Given the importance of recreational water quality, it is impor-
tant not only to monitor it, but also to predict it. This is to ensure
that the public can be given a timely warning of the possible
contamination and the ensuing disease burden and economical loss
can be avoided. This task is complicated by the fact that the water
quality is influenced by a variety of factors such as seasonal
changes, land-use, human activities, and extreme weather events
(Kang et al., 2010; McDowell and Wilcock, 2008; Muirhead et al.,
2004, 2006). It is also somewhat complicated by defining the
optimal decision, and looking for a balance between false positives
(warning of contamination when there is none) and false negatives
(failing to spot contamination). The cost of misclassifying mode
Green into Amber or Amber into Green is not as severe as these
modes allow for recreational activities to be carried out. However,
the misclassification of Red into Amber or Red into Green etc.
should be treated seriously as it can result in severe illness.

In the past, a variety of statistical models have been used to
predict water quality. Regression trees have been used to predict
bathing suitability throughout Scotland (Stidson et al., 2012), and
by D�zeroski et al. (2000) for water quality prediction in Slovenian
rivers. Discriminant analysis has been used to evaluate the spatial
and temporal variations of water quality in the Gomti River, India

Singh et al., 2004, and similarly in the Fuji River Basin (Shrestha and
Kazama, 2007). Bayesian networks have also been used in water
quality management: Ha and Stenstrom 2003 used a Bayesian
network to identify the origins of storm water based on land use;
and by Donald et al. (2009) to determine the risk of gastroenteritis
from recycled water. The use of multiple regression models have
also shown that heavy rainfall increases pollutant load (Maniquiz
et al., 2010) and urban areas tend to decrease downstream water
quality (Mallin et al., 2016). Moreover, Thoe et al., 2014 wanted a
model to predict water quality at Santa Monica Beach that would
perform better than the naive model that was used at the time.
They compared model performance between five statistical
models; multiple linear regression, logistic regression, partial least
squares regression, artificial neural networks and classification tree
and found that the all the statistical models performed better than
the existing method.

The objective of this studywas to find amodel that could predict
future E. coli counts or water quality modes based on preceding
data in the same season or year. This prediction would be based on
past values of E. coli counts, accumulated rainfall of a monitored
upstream site in the past 48 h and river flow. The results of this
study provides a basis for model suitability for real time prediction
for bathing sites across Southland, New Zealand. The proposed
model should be able to correctly identify mode Red days or predict
higher levels of E. coli concentrations. An additional benefit would
ideally show how the inputs and their varying levels affect water
quality. This could aid in policy decisions and allow the public to
better asses the level of risk in regards to recreational water use. In
this case study, we apply a variety of statistical models, including
log-linear regressionmodel, logistic regressionmodel, discriminant
analysis, regression trees, random forests and Bayesian networks to
predict water quality for the summers 2005e2014 for the Oreti
river in Wallacetown, which is a recreational water site situated in
Southland, New Zealand. The response variable, E. coli concentra-
tion, is treated both, as continuous counts and as categorical vari-
able with modes Green, Amber and Red. The predictive power of
each model is assessed using cross-validation and conclusions are
drawn about the best practice.

2. Study site and data

The study site is situated on the Oreti River in Wallacetown,
Southland New Zealand (see Fig. 1). The Oreti river in Wallacetown
is a locationwhich is identified as being of value for recreational use
and is known to experience degraded water quality (Environment
Southland, 2010; Environment Southland and Te Ao Marama Inc,
2010). The land use surrounding the area consists of dry stock
(42%), natural state (32%), dairy farming (18%), forestry (7%) and
other uses (1%). In addition, the Winton WWTP processes waste-
water from the small town of Winton, the discharge is into a trib-
utary of the Oreti River, the Winton Streamwhich is approximately
6 km upstream of the confluence and 23 km up stream of the
Wallacetown monitoring site (Pearson and Couldrey, 2016).

These observations are for the summer months between
December and April when recreational use is expected to occur see
Table 1. There is variation in sample size (n) between years due to
occasional missing weeklymeasurements. As water quality mode is
derived directly from the E. coli counts, we can either model the
reported E. coli concentration or the corresponding mode. These
modes and their cut-off points are given in Table 2.

The data set consists of weekly measurements of E. coli MPN
counts based on a single sample, water quality mode which is
derived from E. coli, river flow (m3=s) and rainfall data (mm). The
E. coli counts were calculated using the Quantitray MPN method
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