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a b s t r a c t

The emission of greenhouse gases continues to amplify the impacts of global climate change. This has led
to the increased focus on using renewable energy sources, such as biofuels, due to their lower impact on
the environment. However, the production of biofuels can still have negative impacts on water resources.
This study introduces a new strategy to optimize bioenergy landscapes while improving stream health
for the region. To accomplish this, several hydrological models including the Soil and Water Assessment
Tool, Hydrologic Integrity Tool, and Adaptive Neruro Fuzzy Inference System, were linked to develop
stream health predictor models. These models are capable of estimating stream health scores based on
the Index of Biological Integrity. The coupling of the aforementioned models was used to guide a genetic
algorithm to design watershed-scale bioenergy landscapes. Thirteen bioenergy managements were
considered based on the high probability of adaptation by farmers in the study area. Results from two
thousand runs identified an optimum bioenergy crops placement that maximized the stream health for
the Flint River Watershed in Michigan. The final overall stream health score was 50.93, which was
improved from the current stream health score of 48.19. This was shown to be a significant improvement
at the 1% significant level. For this final bioenergy landscape the most often used management was
miscanthus (27.07%), followed by corn-soybean-rye (19.00%), corn stover-soybean (18.09%), and corn-
soybean (16.43%). The technique introduced in this study can be successfully modified for use in
different regions and can be used by stakeholders and decision makers to develop bioenergy landscapes
that maximize stream health in the area of interest.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

With the recent concern for the impacts of increased green-
house gas emissions on climate change, renewable energy sources
have gained popularity due to the fact that they have a much lower
environmental impact than fossil fuels. Among the renewable en-
ergy sources, perhaps biofuel has been promoted most significantly
in the recent decade. This is due to the many benefits that biofuels
represent, such as reduced CO2 emissions and supporting local
agriculture (Farrell et al., 2006; Goldemberg, 2007; Groom et al.,
2008; Ragauskas et al., 2006). However, there are many negative
impacts associated with biofuel production. Altering forest and

grassland landuse to allow for the production of bioenergy crops
has been shown to increase CO2 emissions (Searchinger et al.,
2008). Furthermore the growth of bioenergy crops has led to the
increase of nutrient and chemical loading in nearby water systems,
which can impact the health of both the ecosystems and humans
(Landis et al., 2008; Love et al., 2011; Nyakatawa et al., 2006).
Therefore, decision makers need to take into account both the
positive and negative impacts of biofuel production when deciding
how to best apply bioenergy crops to a region.

Many studies have been conducted to evaluate the impacts of
expanding bioenergy crop production on water quality and quan-
tity. First generation bioenergy crops, such as corn, were the first
plants used for biofuel production due to their easily processed
starches (Goldemberg, 2007). However, studies have indicated that
relying on starch crops increases the chemical, nutrient, and sedi-
ment loads to nearby water systems (Egbendewe-Mondzozo et al.,
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2013; Love et al., 2011; Thomas et al., 2014; Wu and Liu, 2012).
Furthermore, first generation bioenergy crops require more water,
which increases the amount of water needed for irrigation
(Gasparatos et al., 2013; Wu and Liu, 2012). In order to mitigate
these disadvantages, second generation bioenergy crops were
introduced. These included lignocellulosic crops such as popular
and miscanthus (Wu and Liu, 2012). Compared to the imple-
mentation of first generation bioenergy crops, the use of second
generation bioenergy crops these crops reduces both the pollutant
loadings in nearby water systems and the water yield (Love et al.,
2011; Thomas et al., 2014; Wu and Liu, 2012). However, applying
second generation bioenergy crops to natural environments, such
as forests or grassland, could lead to increased pollutants loads and
greater water demands (Wu and Liu, 2012).

To monitor the environmental impacts of anthropogenic activ-
ities, stream health is often used (Karr and Dudley, 1981; Pander
and Geist, 2013; Walters et al., 2009). Stream health can be
defined as the chemical, physical, and biological condition of a
stream (Karr, 1999; Maddock, 1999). Biological indictors are often
used when determining stream health due to their ability to not
only represent not only the biotic characteristics of stream but also
the physical and chemical (abiotic) characteristics (Brazner et al.,
2007; Leigh et al., 2013; Pelletier et al., 2012). Furthermore,
stream health can be modeled and calculated for all stream seg-
ments within a watershed (Einheuser et al., 2012). This allows
environmental resource managers to use stream health scores to
identify degraded regions and allocate resources to restore the
ecosystems with the greatest needs (Butcher et al., 2003; Pelletier
et al., 2012; Walters et al., 2009).

To minimize the environmental impacts of large scale bioenergy
crop expansion, it is important to optimize the design of the bio-
energy crop landscape for the study area. One approach is to
examine a landscape design and monitor it for several years to
determine which design is the best for the region. However, this
approach is impractical due to cost and time constraints. Therefore,
modeling approaches are typically preferred, which are inexpen-
sive and faster alternatives to monitoring (Arabi et al., 2006;
Einheuser et al., 2013a; Giri et al., 2012). However, modeling still
has its own limitations. Access to detailed datasets and computa-
tional power are required when using models (Einheuser et al.,
2013a).

As presented above, with respect to evaluating bioenergy crop
expansion, numerous studies have been done but to the best of our
knowledge, this is the first study that combines the concept of
stream health for optimizing the placements of different bioenergy
crops. This will be completed through the main objectives, which
are: (1) predict stream health conditions beyond the monitoring
points of a biological indicator, and (2) develop a series of bioenergy
crop management scenarios that maximize stream health within a
watershed.

2. Materials and methods

2.1. Study area

The region used for this study was the Flint River Watershed in
Michigan (Fig. 1). This is an 8-digit hydrologic unit code (HUC
04080204) and is part of the Saginaw River Watershed, which has
been identified as an area of concern due to bacteria, excessive
nutrients, habitat loss, and hazardous chemicals, which has led to
the degradation of the environmental conditions in the region
(MSU Planning & Zoning Center, 2012). The Flint River Watershed
discharges into the Shiawassee River, with the final outlet for the
region discharging into Lake Huron at the mouth of the Saginaw

River. The region has a total area of 3445 km2, and is dominated by
forest (40%), followed by agricultural land (25%), pasture (18%),
urban (16%), and finally wetland and water (both 1%). While the
largest individual landuse type is forest (40%), anthropogenic ac-
tivities (agriculture, pasture, and urban) impact over half the region
(59%).

2.2. Data collection

2.2.1. Physiographic data
To develop the stream health models for the Flint River Water-

shed, several spatial and temporal datasets were obtained. These
datasets included topography, land use, soil characteristics, climate
data, and management practices. Thirty-meter spatial resolution
National Elevation Data was used to represent the topography of
the region and was obtained from the US Geological Survey (USGS)
(NED, 2014). Thirty-meter spatial resolution 2012 Cropland Data
Layer (CDL) was used to represent the landuse in the study area and
was obtained from the United States Department of Agriculture-
National Agricultural Statistics Service (USDA_NASS) (NASS,
2012). Soil characteristics data was obtained from the Natural Re-
sources Conservation Service (NRCS) Soil Survey Geographic
(SSURGO) database at a scale of 1:250,000 (NRCS, 2014). Precipi-
tation and temperature data were obtained from the National Cli-
matic Data Center (NCDC). Within the Flint River Watershed, six
precipitation and six temperature stations were used to supply
daily climatological information from 1998 to 2005. Other climate
data such as relative humidity, solar radiation, and wind speed
were obtained from the SWAT weather generator (Neitsch et al.,
2011). The stream network and subbasins were created from a
1:24,000 National Hydrography Dataset plus (NHDPlus) and
refined by the Michigan Institute for Fisheries Research for stream
health studies. Each of the 3807 subbasins from this dataset con-
tains an individual stream and is considered to be physicochemi-
cally, geomorphologically, and biologically unique (Einheuser et al.,
2013a). Bioenergy management operations, schedules, and crop
rotations were obtained from the Michigan State University
Extension, as presented by Love and Nejadhashemi (2011) for the
study area.

2.2.2. Biological data
Fish are a commonly used biological indicator of stream health.

This is due to their wide distribution and sensitivity to a variety of
stressors (Karr, 1981; Mack, 2007; Zhu and Chang, 2008; Navarro-
Ll�acer et al., 2010; Krause et al., 2013; Herman and Nejadhashemi,
2015). Furthermore, due to their life cycles and seasonal migra-
tions they are used to provide regional scale views of stream con-
ditions (Karr, 1981). For this study, the Index of Biotic Integrity (IBI)
was used to evaluate stream health conditions. First introduced by
Karr (1981), the IBI is a multi-metric index that evaluates stream
health by utilizing twelve metrics that can be broadly grouped into
three categories: species diversity, trophic composition, and
abundance of fish communities. However, to better represent the
regional fish communities, a modified IBI was introduced by Lyons
(1992) in which the metrics and scoring systemwere updated. The
ten metrics in the new systemwere given a score of 0e10, with 10
representing non-disturbed conditions within a stream (Lyons,
1992). These were summed just to calculate the overall IBI score.
However, the final score should be adjusted under a certain
ecological conditions (number of individuals per 300m2 is less than
50 or percent of deformities, eroded fins, lesions, or tumors in fish is
greater or equal to 4%) using the correction factors, which can
reduce the overall IBI score up to 20 (Lyons, 1992). After rounding
any negative IBI scores to 0, the final stream health IBI scores
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