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a b s t r a c t

We present a review of recent advances in deterministic solvers for the Boltzmann transport equation for
electrons and holes in a 3D and quasi 2D~k-space and demonstrate the capabilities of deterministic solv-
ers by two new examples: a THz SiGe HBT and a quantum well PMOSFET. Compared to the standard
approach, the Monte Carlo method, these deterministic solvers have certain advantages. They yield exact
stationary solutions and they allow small-signal and noise analysis directly in the frequency range from 0
to THz. Inclusion of magnetic fields, the Pauli principle or rare events causes no problems. Thus, it is now
possible to calculate certain key figures of merit for devices based on the Boltzmann transport equation,
which was previously very difficult or not possible at all. On the other hand, the deterministic solvers are
more memory intensive and more difficult to code than the Monte Carlo method.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The Monte Carlo (MC) method is the standard approach to solve
the Boltzmann transport equation (BTE), which describes transport
of electrons and holes in the semi-classical framework (e.g. [2]).
The MC method itself is a numerical approach to integration and
its accuracy is inversely proportional to the square root of the
CPU time (e.g. [3]). In the case of the BTE the MC solver is inher-
ently transient and the solution contains stochastic noise. If the
physical MC approach is used, the stochastic noise is proportional
to the physical noise of the carriers (e.g. [4]). The usual MC method
for devices is charge conserving and in the case of sufficiently short
time steps for the self-consistent solution with the Poisson equa-
tion relatively stable (e.g. [5]). The MC method is well understood
and easy to code. Complex microscopic models can be included
(e.g. full bands [6]). Due to its many advantages the MC approach
is the method of choice for the solution of the BTE and frequently
used.

On the other hand, problems arise for example, when the MC
method is applied to processes, which are rare or evolve on a rela-
tively long time scale. A typical example is the floating body effect
in SOI devices, where rare events (impact ionization or tunneling)

lead to hysteresis effects in the millisecond range and low-fre-
quency noise [7]. By now no successful simulation of this problem
with an MC method has been demonstrated. Self-consistent MC
device simulations require time step lengths in the order of femto-
seconds to resolve the plasma oscillations [8] and simulations for
milliseconds are not feasible. Even simulation times of nanosec-
onds are not feasible and the RF behavior of transistors at techni-
cally relevant frequencies (i.e. in the lower GHz range) cannot be
simulated by MC (see discussion in Ref. [9]). Furthermore, small-
signal behavior is difficult to simulate, since no small-signal MC
approach for devices is known and double randomization has to
be used with its unfavorable stochastic properties. This makes it
very difficult to calculate key figures of merit for RF transistors
(e.g. cutoff frequency). Even standard stationary MC device simula-
tions might require excessive CPU times [10]. Inclusion of the Pauli
principle is possible [11], but requires in devices rather larger par-
ticle ensembles and restricts the simulations to relatively short
durations of simulated time [12].

The shortcomings of the MC method have led to a search for
alternative methods and the most successful one is the determin-
istic spherical harmonics expansion (SHE), which was used already
in the earliest days of solving the BTE (e.g. [13]). In devices not only
the~k-space but also the real space has to be discretized resulting in
huge memory requirements, and for a long time device simulations
by SHE were not possible or required very expensive super
computers in contrast to MC. In recent years this problem has been
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aleviated by advances in DRAM technology and today computers
with more than 100 GBytes are readily available removing the
main obstacle.

In the case of a quantized system (e.g. the channel of a MOSFET)
the ~k-space is 2D and instead of SHE a Fourier harmonics expan-
sion (FHE) of the polar angle is used [14,15]. Otherwise the same
methods can be applied as in the case of SHE [16].

In this paper recent developments of the SHE method are re-
viewed. The method is introduced in the next section and in the
following sections two new examples of challenging device simu-
lations are presented. The first example is a THz SiGe HBT, for
which the characterization includes low currents, breakdown volt-
ages, AC and noise behavior, all of which are difficult to calculate
by the MC method. In the second example a quantum well PMOS-
FET is investigated, where the FHE approach enables the self-con-
sistent solution of the Poisson equation together with the
Schrödinger equation based on a complex Hamiltonian without
further approximations in contrast to previous approaches (e.g.
[17]). Further examples of various device simulations by SHE and
FHE can be found in Ref. [16].

2. Spherical harmonics expansion

In order to reduce the number of dimensions of the problem,
the distribution function in the 3D~k-space is expanded with spher-
ical harmonics based on spherical coordinates w.r.t. the angles
[18,19]. Spherical harmonics are used for this expansion in the
hope that they capture the symmetry of the problem and thus con-
verge quickly leading to a small lmax

f ð~k;~rÞ ¼ f ðe; #;u;~rÞ

�
Xlmax

l¼0

Xm¼l

m¼�l

fl;mðe;~rÞYl;mð#;uÞ;
ð1Þ

where~k is the wave vector,~r the position in real space, e the energy,
#,u the spherical angles in the~k-space, Yl,m the spherical harmonics
and lmax the maximum order of the SHE. This leads to a projection
of the BTE which results in balance equations for the coefficients of
the expanded distribution function in energy and real space. Thus,
the number of dimensions of the solution domain is reduced by
two at the cost of multiple and coupled balance equations. These bal-
ance equations can be handled with numerical methods similar to the
drift–diffusion model (finite volume method, dimensional splitting,
etc.) [20,16] and easily integrated in a standard TCAD framework.
The initial problems with numerical stability have been successfully
solved (e.g. H-transform [18], maximum entropy dissipation scheme
[21,20], for details see [16]). With this approach stationary self-con-
sistent solutions of the BTE and Poisson equation can be calculated for
devices, where the final convergence is ensured by the Newton–
Raphson method [22], even in the case where the Pauli principle is
considered [23]. In addition, exact small-signal and noise analysis is
possible directly in the frequency domain [24,16]. This led to the first
simulations of partially depleted SOI-NMOSFETs including the kink-
effect and noise based on the BTE [16]. Cyclostationary simulations
with the harmonic balance approach are possible [25]. Full-band
structures can be included with different levels of approximation
[26,27,16]. Exact inclusion of full-bands is possible [20], if the relation
between energy and the modulus of the wave vector is monotonic
[28]. Bipolar device simulations by SHE of electrons and holes to-
gether with generation/recombination processes have been demon-
strated [29]. Magnetic fields can be included and the small changes in
transport can be accurately calculated [30]. Even quantum transport
effects have been considered [31].

About 80 GBytes of memory are required for a DC and small-sig-
nal simulation of a device, which is 2D in real space. Although

memories of this size are available today, a method has been devel-
oped to reduce the memory requirements [32], and a DC simula-
tion of a FinFET, which is 3D in real space, has been
demonstrated recently, where the memory requirement was less
than 12 GBytes [33]. The simulation is based on a tetrahedral grid
in real space and an adaptive maximum SHE order in the energy/
real space.

3. SiGe HBT

The first example is the THz SiGe HBT of Ref. [34], which is sim-
ulated with a box and a drift Ge profile. The vertical doping and Ge
profiles are shown in Fig. 1. Both Ge profiles have the same total Ge
content. The drift profile is non-standard, because it extends into
the highly-doped emitter. The maximum concentrations of donors
and acceptors exceed 1020/cm3. The 2D geometry is shown in
Fig. 2. It is assumed that the transistor is symmetric to the line
y = 0 and the width of the emitter window is 2 � 25 nm. The sim-
ulation grid in the real space is indicated by the ticks in Fig. 2. It has
120 lines in x-direction and 20 in y-direction resulting in 2400 grid
nodes in real space. The spacing of the H-grid is 5.167 meV. The to-
tal number of variables depends on the maximum order of the SHE
and the applied bias conditions, which determine the range of the
H-grid. In the case of small-signal or noise analysis complex num-
bers are used and the memory requirement doubles. The noise
simulations shown in Fig. 8 required about 80 GBytes of memory.
The CPU time for the DC simulations shown in Fig. 5 was about 5 h
per bias point on a current computer.

The SHE solver is initialized with a potential calculated by a
consistent drift–diffusion model. Then a few Gummel-type relaxa-
tion steps are used to reduce the error in the potential further. Be-
low a certain threshold the Newton–Raphson iteration, which
solves the Poisson equation and BTE self-consistently, is started
[16]. Its convergence is demonstrated in Fig. 3. Within five itera-
tions the Newton–Raphson method is converged (potential correc-
tions lower than 10�10 V). The rapid superlinear convergence
indicates that the solution is very close to the real solution of the
system of nonlinear equations and reliable. In addition, an exactly
stationary solution is obtained in contrast to the transient MC
method [8]. The electron density is shown for the drift transistor
in Fig. 4 at a very low base/emitter bias of 0.4 V. In this case the
density varies by 15 orders of magnitude. Nevertheless, a stable
solution is obtained and no spurious oscillations occur. This dem-
onstrates the extraordinary numerical stability of the H-transform
in conjunction with maximum entropy dissipation scheme. Huge
variations in density cause no problems, whereas in the case of
the MC method simulation of low densities is only possible by
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Fig. 1. Doping and Ge profiles of the SiGe HBT.
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