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a b s t r a c t

Stranded oil covering soil and plant stems in fragile Louisiana marshes was one of the most visible
impacts of the 2010 Deepwater Horizon (DWH) oil spill. As part of the assessment of marsh injury after
the DWH spill, plant stem oiling was broken into five categories (0%, 0e10%, 10e50%, 50e90%, 90e100%)
and used as the independent variable for estimating death of vegetation, accelerated erosion, and other
metrics of injury. The length of shoreline falling into each of these stem oiling categories was therefore a
key measure of the total extent of marsh injury, and its accurate estimation is the focus of this paper.
First, we used geographically-weighted logistic regression (GWR) to explore and model spatially varying
relationships between stem oiling field data and secondary information (oiling exposure category)
collected during shoreline surveys. We then combined GWR probability estimates with field data using
indicator cokriging to predict the probability of exceeding four stem oiling thresholds (0, 10, 50, and 90%)
at 50 m intervals along the Louisiana shoreline. Cross-validation using Receiver Operating Characteristic
(ROC) Curves demonstrate the greater prediction accuracy of the multivariate geostatistical approach
relative to either aspatial regression or indicator kriging that ignores secondary information.

© 2016 Published by Elsevier Ltd.

1. Introduction

Studies of vegetation death and accelerated marsh erosion
following Deepwater Horizon (DWH) have shown that both of these
impacts (or “injuries,” when assessing natural resource damages)
can be related to the percent of oiling on the stems of marsh
vegetation (e.g., Hester et al., 2015; Silliman et al., 2015). Spatial
quantification of these injuries thus relies on estimates of how
many kilometers of shoreline fell into each of the four stem oiling
categories on which these injury determinations were based
(0e10%, 10e50%, 50e90%, 90e100%). Vegetation oiling from the
DWH spill was unevenly distributed across Louisiana marsh envi-
ronments, however, and quantitative measurements of stem oiling
were collected only at discrete points (Deepwater Horizon NRDA,
2010a). Spatially continuous observations of shoreline oiling were
collected as part of response activities and the natural resource
damage assessment (NRDA), and these data were combined into a
“shoreline exposure” database for the NRDA (Deepwater Horizon
NRDA, 2010b; Nixon, 2015; NOAA, 2013). However, the oiling

categories within the shoreline exposure database are qualitative,
and do not contain direct information on stem oiling. Furthermore,
due to the scope of the DWH spill and the difficulty of finding oil in
marshes, these qualitative shoreline surveys sometimes docu-
mented segments as “no oil observed” (NOO) in places where more
detailed surveys documented oiling at other points in time.
Recognizing the relative strengths and limitations of both of these
oiling datasets, the goal of this study was to test and apply geo-
spatial methods for combining quantitative point observations of
stem oiling with continuous, qualitative observations in the
shoreline exposure database to estimate the length of shoreline
falling into each of the five stem oiling categories.

One way of quantifying the length of shoreline falling into each
stem oiling category would be to assume that measured stem oiling
values were evenly distributed within each exposure category, and
to calculate the length of each stem oiling category based on pro-
portional assignments within the shoreline exposure framework.
However, stem oiling data were often clustered in space, violating
the assumption of equal distribution within exposure categories.
This is a particular concern for apportionment of stem oiling data
that were recorded within the NOO category (i.e. false negatives),
since there were thousands of kilometers of shoreline within this* Corresponding author. PGeostat LLC, 11487 Highland Hills Drive, MI 49249, USA.
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category but nonzero stem oiling observations within this category
were generally clustered in space.

An alternative is to use a geostatistical approach that can ac-
count for the geographical location of the environmental data and
their spatial correlation, as modeled by variograms (e.g., Goovaerts
et al., 2008; Kitsiou and Karydis, 2011). The application of geo-
statistics to this particular dataset, however, presented several
challenges. First, field data were collected with different spatial
resolutions and degrees of reliability. Some data represent precise
measurements of percentage of stem oiling at specific locations
(“hard data”). At other specific locations, we only know whether
the vegetation was oiled or not; we do not know the percentage of
stem oiling (“soft data”). Finally, although the shoreline exposure
database provides a more comprehensive spatial coverage, the
oiling descriptors in this dataset are more qualitative with respect
to stem oiling (“secondary information”).

The second major challenge arises from the complex geometry
of the site. Louisiana has a deeply dissected and crenulated marsh
coastline, and oil was transported into this region via the bays and
inlets that dissect it. As a result, spatial correlation of stem oiling
may be more directly related to over-water distance than straight
line (Euclidian) distance (Barab�as et al., 2001; Money et al., 2009).
Third, the heterogeneity of the shoreline and the fact that surveys
were conducted by different teams at different times likely impacts
locally the relationship between secondary data (oiling exposure
category) and percentage of stem oiling measured in the field (i.e.
non-stationary relationships). Fourth, the sheer size of the datasets
analyzed (e.g. 1100 field data and 118,151 shoreline grid nodes to
predict) precluded the use of Bayesian methodologies based on
traditional MCMC (Markov chain Monte Carlo) schemes (Gelfand
et al., 2003), while more powerful approaches, e.g. the INLA (inte-
grated nested Laplace approximations) methodology, rely heavily
on numerical methods and computer programming that are
beyond the scope of this study (Martins et al., 2013).

This paper describes the procedure developed to estimate the
expected lengths of mainland herbaceous shoreline in Louisiana
falling into four stem oiling categories: 0e10%, 10e50%, 50e90%,
and 90e100%. The varying reliability of the different pieces of in-
formation was integrated using a soft and hard indicator coding of
the data (Goovaerts, 1997; Hu et al., 2005), whereas geographically-
weighted logistic regression (Fotheringham et al., 2002; Goovaerts
et al., 2015; van Donkelaar et al., 2015) was used to explore and
model spatially varying relationships between stem oiling field
data and secondary information collected during shoreline surveys.
Probabilities of exceeding stem oiling thresholds estimated from
field measurement and survey data were combined using indicator
cokriging (Goovaerts and Journel, 1995). Sensitivity analysis and
cross-validation helped guide the choice of optimal sets of pa-
rameters and investigate the impact of search strategy and distance
metrics on prediction accuracy.

2. Materials and methods

2.1. Datasets

Detailed measurements of stem oiling were collected at 911
discrete points within mainland herbaceous marshes of coastal
Louisiana (Fig. 1). These marshes are located along the edges of
saline to brackish estuaries and bays throughout Louisiana, and are
dominated by the marsh vegetation Spartina alterniflora. Stem oil-
ing measurements were collected in the late summer and early fall
of 2010, as part of a study referred to as the Marsh Pre-Assessment
Study (Deepwater Horizon NRDA, 2010a). At each of these 911 lo-
cations, field data were recorded as the percent of stem height
oiled, and these raw measurements were then condensed into one

of the five stem oiling categories described above (0%, 0e10%,
10e50%, 50e90%, or 90e100%). The marsh pre-assessment
dataset also includes 185 additional sites where stem oiling was
simply categorized as “oiled” or “not oiled.” These 185 “soft” data
provide additional information on the spatial distribution of oiled
plant stems (see Fig. 1).

Between 2010 and 2013, spatially continuous descriptions of
oiling were also collected along the Louisiana shoreline as part of
the shoreline cleanup and assessment technique (SCAT) program
(Michel et al., 2013; NOAA, 2013). These observations were
collected primarily to inform response activities, and summarized
oiling along the shoreline using qualitative, categorical descriptors.
As a supplement to the SCAT data, spatially continuous, qualitative
descriptions of shoreline oiling were also collected for the NRDA as
part of the Rapid Assessment program (Deepwater Horizon NRDA,
2010b). Although both of these data sources provide spatially
continuous coverage, they did not include detailed measurements
of stem oiling.

During the injury assessment phase of the NRDA, the SCAT and
Rapid Assessment datasets were combined into a single database
referred to as the shoreline exposure database (Nixon, 2015) dis-
played in Fig. 2. Oiling exposure in this dataset is classified into one
of the following four categories: NOO, lighter oiling, heavier oiling,
and heavier persistent oiling. For the purposes of our study, the
categorical descriptors of shoreline oiling within this dataset are
referred to as “secondary information” on stem oiling. 729 of the
911 locations with hard data on stem oiling were co-located with
secondary information from the shoreline exposure database
(Fig. 3).

The geospatial analysis was thus based on four main types of
data:

(1) Measurement of the percentage of plant stem oiling from the
pre-assessment dataset (911 “hard” data)

(2) Indicators of presence/absence of plant stem oiling from the
pre-assessment dataset (185 “soft” data)

(3) Oiling exposure category (“secondary information”) sur-
veyed along approximately 1600 km of mainland herbaceous
marsh coastline and at 729 of the 911 hard data locations.

(4) Length of shoreline located within 118,15150� 50 m squares
discretizing the Louisiana coastline.

2.2. Methodology

The analysis was conducted using the following software: 1)
SpaceStat 4.0 (Jacquez et al., 2014) for geographically-weighted
regression and variogram modeling, 2) SAS 9.3 (SAS Institute Inc.,
2011) for aspatial logistic regression and the creation of ROC
curves, 3) SGeMS (Remy et al., 2008) and Gslib (Deutsch and
Journel, 1998) for cross-variogram modeling and indicator cokrig-
ing, and 4) code written by Dr. Goovaerts for data manipulation and
computation of expected lengths of shoreline in different cate-
gories of plant stem oiling. The flowchart in Fig. 4 illustrates the
main steps in the analysis, as described below.

2.2.1. Indicator coding of plant stem oiling data
The analysis started with the coding of each percentage of stem

oiling data into a vector of indicators of exceedance of four
thresholds zc¼ 0,10, 50, and 90%. Let ua¼ (xa,ya) be a vector of UTM
coordinates representing the geographical location of a stem oiling
data point, denoted z(ua) for hard data and s(ua) for soft data. The
set of four indicators at any hard data location ua was then con-
structed as:
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