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a b s t r a c t

In this study, a multi-level factorial-vertex fuzzy-stochastic programming (MFFP) approach is developed
for optimization of water resources systems under probabilistic and possibilistic uncertainties. MFFP is
capable of tackling fuzzy parameters at various combinations of a-cut levels, reflecting distinct attitudes
of decision makers towards fuzzy parameters in the fuzzy discretization process based on the a-cut
concept. The potential interactions among fuzzy parameters can be explored through a multi-level
factorial analysis. A water resources management problem with fuzzy and random features is used to
demonstrate the applicability of the proposed methodology. The results indicate that useful solutions can
be obtained for the optimal allocation of water resources under fuzziness and randomness. They can help
decision makers to identify desired water allocation schemes with maximized total net benefits. A va-
riety of decision alternatives can also be generated under different scenarios of water management
policies. The findings from the factorial experiment reveal the interactions among design factors (fuzzy
parameters) and their curvature effects on the total net benefit, which are helpful in uncovering the
valuable information hidden beneath the parameter interactions affecting system performance. A
comparison between MFFP and the vertex method is also conducted to demonstrate the merits of the
proposed methodology.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Global water resources are under pressure due to rapid popu-
lation growth, intensive socio-economic development, and warm-
ing climate (V€or€osmarty et al., 2000). Water scarcity is becoming a
critical issue in many countries, since water demand is increasing
rapidly while fresh water supplies are shrinking dramatically. As a
result, conflicts often arise when different water users compete for
a limited water supply (Wang et al., 2008). To achieve sustainable
development, wise decisions are desired to make best use of
limited water resources.

Optimization techniques are recognized as a powerful tool for
investigating the economic benefits of policy decisions and for

planning water resources systems in an effective and efficient way.
However, mathematical modeling of real-world water resources
systems involves a variety of uncertainties due to (1) the inherent
unpredictability of systems, (2) simplifications in model formula-
tion, and (3) uncertainties in the estimates of model parameters.
The potential interactions among these uncertainties may further
intensify the complexity in the decision process. Therefore, inexact
optimization methods are desired to support water resources
management in an uncertain and complex environment.

Over the past decades, a number of inexact optimization
methods have been proposed for addressing uncertainties in
environmental management problems (Maqsood et al., 2005;
Chung et al., 2009; Teegavarapu, 2010; Gaivoronski et al., 2012;
He et al., 2012; Shen et al., 2012; Wang et al., 2012; Assumaning
and Chang, 2014; Li et al., 2015; Rahmani and Zarghami, 2015).
Among these methods, two-stage stochastic programming (TSP)
has the ability to take corrective actions after a random event oc-
curs (Birge and Louveaux, 1988). In a TSP model, two groups of
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decision variables can be distinguished. The first-stage decision
must be made before the values of uncertain parameters are
observed. The optimal values of the first-stage decision variables
are independent of the realization of uncertain parameters. Sub-
sequently, the second-stage decision can be determined after a
specific realization of uncertain parameters is observed. The
recourse action in the second stage is effective in minimizing the
risk of infeasibility as a result of the first-stage decision. TSP can
thus be used to make decisions in a two-stage fashion with un-
certain parameters expressed as probability distributions. Howev-
er, TSP has the difficulty in dealing with uncertainties when the
sample size is too small to generate distribution functions. The
large sample size required for constructing the parameters proba-
bility distributions leads to a major limitation to the practical
applicability of TSP.

In comparison, fuzzy set theory, which serves as a useful
mathematical tool to facilitate the description of complex and ill-
defined systems (Zadeh, 1965, 1978), is capable of quantifying the
vague information without the sample size requirement. Fuzzy
mathematical programming based on fuzzy set theory has been
widely studied (Bellman and Zadeh, 1970; Zimmermann, 1976;
Tanaka and Asai, 1984; Zimmermann, 1985; Dong and Shah, 1987;
Teegavarapu and Simonovic, 1999; Akter and Simonovic, 2005;
Jim�enez et al., 2007; Wang and Huang, 2013; Wang et al., 2015b).
Among them, the vertex method proposed by Dong and Shah
(1987) is recognized as an effective tool for tackling fuzzy sets
based on the a-cut concept and interval analysis. Nevertheless, the
vertex method assumes that the same a-cut level is applied to all
fuzzy sets in the fuzzy discretization process, and the results can
thus be obtained with a particular a-cut level. In real-world prob-
lems, however, decision makers may have different attitudes to-
wards fuzzy parameters, implying that the a-cut levels applied to
different fuzzy parameters may vary. The a-cut levels are chosen
subjectively based on decision makers' attitudes towards uncer-
tainty. The larger the specified value of a, the smaller the uncer-
tainty. For example, certain fuzzy parameters may be tackled with
the a-cut level of 0.5, while the others are processed with the a-cut
level of 1.0. Such a complexity needs to be addressed when dealing
with fuzzy parameters. In addition, fuzzy parameters are often
correlated with each other in practice. It is thus necessary to
investigate the potential interactions among fuzzy parameters and
reveal their effects on the model response.

Factorial designs have beenwidely used to study the interaction
effects of two or more factors on a response variable (Lewis and
Dean, 2001; Lin et al., 2008; Qin et al., 2008; Mabilia et al., 2010;
Onsekizoglu et al., 2010; Zhang and Huang, 2011; Wei et al.,
2013; Wang et al., 2015a). All these studies took advantage of the
two-level factorial design which assumed that the response was
linear over the range of factor levels. However, many practical
problems involve the nonlinear relationships between design fac-
tors and the model response. The two-level factorial experiment
can hardly address the nonlinear effects. The concept of multi-level
factorial designs is thus proposed in this study to detect the cur-
vature in the response function (Box and Behnken, 1960; Xu et al.,
2004; Wu and Hamada, 2009; Wang and Huang, 2015). When the
investigated factors are uncertain and given as fuzzy sets instead of
the standard representation of design factors with each at fixed
levels, combining the multi-level factorial designs with the vertex
method is a sound strategy for not only revealing the interactions
among fuzzy sets, but also facilitating the processing of fuzzy sets
using various combinations of a-cut levels.

Therefore, the objective of this study is to develop a multi-level
factorial-vertex fuzzy-stochastic programming (MFFP) approach
through incorporating TSP, fuzzy set theory, vertex analysis, and the
concept of multi-level factorial designs within a general

framework. MFFP is capable of tackling probabilistic and fuzzy
uncertainties, and of revealing the interdependences of fuzzy un-
certainties as well as their resulting effects on system performance.
A water resources management problem will be used to verify the
applicability of MFFP. Finally, a detailed comparison between MFFP
and the vertex method will be conducted to demonstrate the
merits of the proposed methodology.

2. Methodology

2.1. Fuzzy stochastic optimization model

In a TSP model, decision variables can be divided into two
groups, including first-stage and second-stage variables. First-stage
variables are decided upon prior to the actual realization of random
parameters. Once the uncertain events have occurred, a recourse
action can be taken in the second stage, leading to a dynamic
decision-making process. A standard TSP model can be formulated
as follows (Birge and Louveaux, 1988):

Max f ¼ CTX þ E½QðX; xÞ� (1a)

subject to:

AX � B (1b)

X � 0 (1c)

With

QðX; xÞ ¼ maxDðxÞTY (1d)

subject to:

TðxÞX þWðxÞY � НðxÞ (1e)

Y � 0 (1f)

where C 2Rn1 , X 2Rn1 (first-stage decision variable vector), A
2Rm1�n1 , B 2Rm1 , D 2Rn2 , Y 2Rn2 (second-stage decision variable
vector), T2Rm2�n1 ,W2Rm2�n2 , H2Rm2 , x is a random vector and x

(D, T, W, H) contains the data of the second-stage problem. Letting
the random vector x take a finite number of possible realizations x1,
…, xk with respective probability of occurrence p1, …, pk,

P
pk ¼ 1,

the above TSP problem can be written as a deterministic equivalent
linear program as follows:

Max f ¼ CTX þ
Xm
k¼1

pkD
TY (2a)

subject to:

AX � B (2b)

TX þWY � xk; ck (2c)

X � 0 (2d)

Y � 0 (2e)

TSP is capable of reflecting the dynamic nature of decision
problems under uncertainty, enhancing the flexibility in the
decision-making process. In TSP, random variables in the model's
parameters can be represented by a set of scenarios, each occurring
with a given probability. In real-world problems, subjective
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