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a b s t r a c t

We develop theoretical models and numerical simulators to accurately describe the AC signal response of
nanoelectrodes to the presence of biomolecules, in order to aid the design of capacitive biosensors. In par-
ticular, we first develop an analytical model for the electrolyte response to AC signal stimulation, showing
that it is possible to define an AC screening length as in the standard Debye–Hückel theory. We then
develop a full-custom numerical simulator for a simple nanoelectrode system, where the AC part is
solved in the small-signal approximation, coupled to the DC solution. We validate the solver using the
analytical model, and then use it to understand the effect of a dielectric biomolecule on the biosensor
admittance.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Since their first appearance [1], capacitive biosensors have at-
tracted increasing interest for label-free detection of various ana-
lytes, and the progress of CMOS nanoelectronics is opening new
opportunities for integrated biosensors based on biofunctionalized
electrodes connected to integrated impedance measurement cir-
cuitry [2]. While experimental setups [3,4] and fully integrated
prototype realizations [5,6] become more numerous, a need for
more accurate modeling and simulation of electronic biosensors
at the device level is emerging as well.

Simple one-dimensional DC analytical models of, e.g. ISFETs and
EISFETs, have been presented, for instance, in [7,8]. Another analyt-
ical model, applied to describe the charge screening around nano-
wire biosensors, is described in [9]. Poisson–Boltzmann solvers
have been employed, for instance, in [10,11]. A general approach,
based on the self-consistent solution of the DC Poisson–Nerst–
Planck and sometimes Stokes equations in a TCAD-like environment
is pursued in [12–14]. Most of the work so far has been devoted to
silicon nanowire biosensors. To our knowledge, however, at present
there has been little work on frequency-domain modeling and sim-
ulation of biosensors. In particular, there seems to be limited under-
standing of high-frequency biosensors (up to 1 GHz), which are
starting to become of increasing interest, also in the scope of being
able to overcome the limitations due to the electrolyte screening
[6,15].

In this paper, we significantly expand our previous work on
high-frequency electronic biosensors reported in [16] by extending

the model to AC diffusion currents and steric effects in electrolytes
of arbitrary composition. An analytical one-dimensional solution is
also derived and used to validate the 2D numerical model.

2. Materials and models

The system considered in this study is the same as reported in
[16], and is shown in Fig. 1. Two ideally polarizable flat and circular
metallic electrodes delimit a simulation domain with rotational
symmetry around the z-axis. On the bottom electrode surface a
dielectric self-assembled monolayer (SAM) may be present, which
is supposed to be flat, homogeneous, with thickness hSAM and
dielectric constant eSAM. The SAM increases the selectivity of the
electrode in capturing target biomolecules. A spherical or ellipsoi-
dal dielectric biomolecule, centered on the z-axis, is optionally in-
serted in the electrolyte. Both surface and bulk charges can be
specified for the SAM and the biomolecule.

DC calculation. The calculation of the DC electrostatic potential
has been described in [16] and is summarized here for the sake
of a self-contained treatment of the AC problem as well: we as-
sume no electrochemical reactions, hence, zero DC current at the
electrodes. Thus the concentration of the mth ionic species (n0m,
in m�3) with signed valence Zm follows an equilibrium Boltzmann
distribution:

n0m ¼ n10m exp � ZmqðV0 � Vref Þ
kBT

� �
ð1Þ

where Vref is the reference potential in the bulk electrolyte and n10m

the bulk concentration; as usual, q is the absolute value of the ele-
mentary charge, kB Boltzmann’s constant and T the absolute tem-
perature. It has to be noted that defining a reference potential is
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equivalent to placing an additional reference electrode in the bulk
of the electrolyte, sufficiently far from the electrodes. This is possi-
ble because the geometric dimensions of the systems we consider
are sufficiently large, so that it is always allowed to define a bulk
region.

By exploiting the rotational symmetry, a non-uniform grid of
rectangular cells with homogeneous dielectric constant ei,k (green1

in Fig. 2) is established in the q–z plane. Gauss’s lawI
@v ik

e E
!

0 � n̂ dS ¼ Q 0ðv ikÞ ð2Þ

with E
!

0 ¼ �rV0 is solved in the domain following a finite differ-
ence scheme [17]. In particular, Eq. (2) is applied to each cell vol-
ume vik around point (i,k). The border of vik (@vik, the red contour
in Fig. 2) is determined by the position of the interleaved-grid
points (i ± 1/2, k ± 1/2). The concentrations (and so the charge) are
discretized according to the finite volume method, following the ap-
proach presented in [18] and assuming them constant in the dual
volume vik. Because of rotational symmetry around the z-axis, the
azimutal components of E

!
0 are zero.

Special care is necessary when applying Eq. (2) to the boundary
cells: we use Dirichlet conditions on the electrodes and Neumann
conditions (zero outer flux) on the other boundaries. Moreover,
second order corrections have been introduced to reduce the dis-
cretization error in those cells that are crossed by the boundaries
between the biomolecule and the electrolyte.

AC calculation. The equations for the time-dependent problem
are the Nernst–Planck equations (known as drift–diffusion equa-
tions in semiconductor physics):

@nm

@t
¼ � 1

Zmq
r � J
!

m ð3Þ

J
!

m ¼ �ZmqðZmqlmnmrV þ DmrnmÞ ð4Þ

where lm is the mobility of the mth ionic species (in (m/N s)) and
Dm its diffusivity (in (m2/s)). The ionic current expression we use
looks different from the one normally employed in electrochemistry
and semiconductor physics (see for instance [19]) because we have
chosen to define the ion mobility, consistently with classical phys-
ics, as the ratio between the ion velocity and the force applied to it.
Following this definition Einstein’s relation is expressed as
Dm = lmkBT.2

Working in the frequency domain, we can write nm ¼ n0mþ
Rð~nm expðjxtÞÞ and V ¼ V0 þRðeV expðjxtÞÞ where j is the
imaginary unit. Using the small signal approximation on the
Nernst–Planck equation and integrating it over the volume vik

(Fig. 2), we obtain:

jx~nmv ik ¼
Z
@v ik
ðZmqlmðn0mreV þ ~nmrV0Þ þ Dmr~nmÞ � n̂ dS: ð5Þ

Denoting N the number of ion species, the system (5) represents
N equations in the N + 1 unknown ~nm and eV . The system of equa-
tions is closed via Poisson’s equation, which we write in the inte-
gral form:

�1
q

Z
@v ik

ereV � n̂ dS ¼ v ik
XN

m¼1

Zm~nm: ð6Þ

We discretize the equations using a finite difference scheme
and the finite volume method following again the approach pre-
sented in [18]. We use again mixed Dirichlet/Neumann boundary
conditions, imposing no net ionic current flowing out of the
domain.

The admittance is finally calculated from the displacement cur-
rent eJD ¼ @D

@t ¼ jxeeE as the ratio of the total current at the contacts eI
and the applied potential eV .3

Meshing of the domain is especially critical in both DC and AC
cases because of the very short Debye length and large interelec-
trode distance. To cope with the scale change, the mesh spacing
near the surfaces is chosen according to the Debye length, while
it increases in the bulk regions. To speed up the calculations and
obtain solutions of high accuracy we have employed a simple ver-
sion of Richardson extrapolation, which has been extensively de-
scribed in [16].

2.1. Electrolyte permittivity

As we will shortly see, to overcome the electrolyte screening it
is in principle advantageous to work at very high frequency, in the
GHz range. In this range, however, the dependency of the water
permittivity on the frequency becomes not negligible. Therefore,
to describe the dependency of the water permittivity on the fre-
quency and on the salt concentration, we used a widely known
double time constant Debye model [20]:

Fig. 1. Schematic representation of the system under study.

Fig. 2. Sketch of the mesh in the q–z plane, showing the volumes vik and the cells
(i,k) where permittivity ei,k is defined.

1 For interpretation of color in Fig. 2, the reader is referred to the web version of
this article.

2 This approach is justified noting that, in semiconductor physics and electro-
chemistry, there are equations describing relations between phenomena that do not
contain charge, like for example Einstein’s relation which can be derived from a
thermodynamic equilibrium between mechanical force and diffusion on the one
hand, and the Boltzmann exponent on the other hand. This means that this family of
equations also holds for neutral particles. However, with the semiconductor physics
definition of mobility for instance, neutral atoms would have zero mobility, while still
reacting to other forces. This dilemma is introduced in semiconductor physics,
because it only treats charged particles and the only source of force is the electric
field. Therefore, the approach we use gives a broader and more general view on the
real physical phenomena.

3 We point out that the ion currents do not contribute because they are zero at the
periphery of the domain. This happens because we assume no electrochemical
reactions at the interfaces (therefore no Faradaic currents at the contacts), and
therefore the current density through the interfaces and the electrodes consists of
displacement current only.
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