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a b s t r a c t

In this paper, we address a physics based closed form model for the energy band gap (Eg) and the trans-
port electron effective mass in relaxed and strained [100] and [110] oriented rectangular Silicon Nano-
wire (SiNW). Our proposed analytical model along [100] and [110] directions are based on the k.p
formalism of the conduction band energy dispersion relation through an appropriate rotation of the Ham-
iltonian of the electrons in the bulk crystal along [001] direction followed by the inclusion of a 4 � 4 Lütt-
inger Hamiltonian for the description of the valance band structure. Using this, we demonstrate the
variation in Eg and the transport electron effective mass as function of the cross-sectional dimensions
in a relaxed [100] and [110] oriented SiNW. The behaviour of these two parameters in [100] oriented
SiNW has further been studied with the inclusion of a uniaxial strain along the transport direction and
a biaxial strain, which is assumed to be decomposed from a hydrostatic deformation along [001] with
the former one. In addition, the energy band gap and the effective mass of a strained [110] oriented SiNW
has also been formulated. Using this, we compare our analytical model with that of the extracted data
using the nearest neighbour empirical tight binding sp3d5s⁄ method based simulations and has been
found to agree well over a wide range of device dimensions and applied strain.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Emergence of Silicon Nanowires (SiNWs) as one-dimensional
transistors has generated a challenging task to investig ate two
of its fundamental band structure dependent electronic properties,
one being the energy band gap (Eg) and the other being the elec-
tron effective mass along the carrier transport direction which
drastically affects the carrier transport mechanism. However as
the experimental study of these parameters at the nanoscale
regime is extremely challenging, usually one relies on the atomic
level simulations, the results of which are at par with the experi-
mental observations.

In recent years, there has been an extensive study on the behav-
iour of Eg and the electron effective mass along different transport
orientations in both relaxed and strained SiNWs by using ab initio
and different empirical methods [1–5]. Albeit of these existing sim-
ulation results, there still lies a provocative challenge in developing
an analytical solution of these electronic parameters due to the
following reasons.

� enhanced electron mobility in relaxed and strained [100] and
[110] channel Si [6],
� crossing of primed and unprimed subbands in SiNW when k.p

formalism is used [3,4,7].
� closed form relation of Eg and electron effective mass in the

presence of strain, and
� standardizing energy parameters in TCAD software for applica-

tions in nanodevices [8].

In this work we use a degenerate k.p theory in a relaxed bulk Si
crystal to obtain the conduction band dispersion relation and
quantized subband energies at the C and off-C axes in a [100] ori-
ented SiNW together with 4 � 4 Lüttinger Hamiltonian dispersion
relation of heavy holes (HHs) and light holes (LHs) subbands. This
is followed by an appropriate rotation of the conduction band and
valence band Hamiltonian to explain the corresponding dispersion
relation and subband energies at both the axes of a [110] oriented
SiNW. By including the quantum confinement effects, we next for-
mulate the direct and indirect energy band gap and the transport
electron effective masses considering both the channel orienta-
tions. In case of [100] SiNW, we have studied the effect of a uniax-
ial and a biaxial strain on the Eg and the transport electron effective
mass. The uniaxial strain has been applied along the [100] direc-
tion while the biaxial strain consists of a hydrostatic deformation
strain along [001] together with the same uniaxial one. The effect
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of these strains together with a shear strain on the variation of
transport electron effective mass in a [110] oriented SiNW has fur-
ther been investigated. In this case, the uniaxial strain is along
[110] direction while the biaxial part contains the same hydro-
static one together with the [110] uniaxial. Both the tensile and
compressive strain is being associated with this uniaxial and biax-
ial strain to investigate the variation of these two parameters. We
have formulated the energy band gap and effective electron mass
in a (001) wafer along [100] and [110] channel directions, which
can also be extended for (001)/[111] case, as this is preferable to
control the carrier mobility both in the absence and presence of
strain. The analytical results of the band gap and the electron
transport effective masses in both relaxed and strained rectangular
SiNW along the former two channel orientations are further being
compared with the data extracted from the Atomistix ToolKit
(ATK) [9] which uses a nearest neighbour empirical tight binding
sp3d5s⁄ method. Our analytical model stands valid for the cases
where the strain is within 1% and the spin–orbit coupling does
not influence the conduction energy band.

2. Model and discussions

2.1. Importance of k.p approach over EMA

The importance of k.p method over EMA in the proper descrip-
tion of the energy band structure of Si lies in the fact that the non-
degenerate EMA equation used for [001] valleys fails to describe
the conduction band wrapping and the subband structure correctly
in (110) oriented Si films [6,10]. In particular, to correlate a com-
plete analytical conduction band dispersion relation with the ad-
vanced empirical tight binding model like sp3d5s⁄, a two band
degenerate k.p model should be used where a second conduction
band close to the first conduction band must be taken into account,
the two of which becomes degenerate just at the X point [10].
These are generally called as primed and unprimed bands respec-
tively. This phenomenon is however not arrested in the simple
non-parabolic EMA analyses [4]. Further the EMA also neglects
any change in the nature of the energy band gap with the applica-
tion of strain properly [7].

2.2. Relaxed [100] SiNW

Intrinsic relaxed bulk Si crystal consists of six equivalent con-
duction band minima located symmetrically along h100i at a dis-

tance of approximately k0 ¼ 0:15 2p
a0

� �
from the X point along C

direction in a three dimensional Brillioun zone, in which a0 is the
relaxed lattice constant of Si. The electron energy dispersion rela-
tion using this two band degenerate k.p model for relaxed bulk
Si crystal along [001] transport direction can be written as [10,11]
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in which E is the electron energy as measured from the bottom of
the conduction band minimum, ± represents the primed and un-
primed band (± at the subscript of the effective masses represents
their corresponding values at the primed and unprimed valleys),
the momentum matrix element identity [10,11] is p

m0
¼ �h0

m3�
,

1
M�
� 1

m1�
� 1

m0
. In case of unprimed band the effective masses are

m1� ¼ mt;m2� ¼ mt m3� ¼ ml and for the primed band the effective
masses are m1þ ¼ ml;m2þ ¼ mt ;m3þ ¼ mt where ml(=0.91m0) and

mt(=0.19m0) are the longitudinal and transverse electron effective
mass [2] in which m0 is the free electron mass, �h ¼ h

2p ;h is the
Planck’s constant and kx, ky and kz are the electron wave vectors
along x, y and z direction respectively. Neglecting the spin–orbit
interaction between the HH and LH with split-off holes, the hole
dispersion relation at the C point can be written as [12]

E ¼ Ak2 � B2k4 þ C2 k2
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where in this case, E is the hole energy as measured from the top of
the valance band maxima, ± indicates the HH and LH bands,
k2 ¼ k2

x þ k2
y þ k2

z and A = �(4.1 ± 0.2)(⁄2/2m0), jBj = (1.6 ± 0.2)(⁄2/
2m0) and jCj = (3.3 ± 0.5)(⁄2/2m0) are the inverse mass band param-
eters [12]. It appears that due to the occurrence of the square root in
Eq. (2), the HH and LH dispersion relation in general cannot be de-
scribed by the effective masses [10]. Keeping this in view, we as-
sume that the Lüttinger parameters A, B and C are independent of
the cross-sectional dimensions.

The energy band structure of SiNW whose electron transport is
along [100] direction is an involved task. The symmetry between
the six equivalent conduction band minima is now displaced due
to the difference in the effective masses as a result of the quantum
confinement of the carriers along the two lateral directions as also
conveyed through the earlier investigations done with the sp3d5s⁄

simulation method [1,2,13]. Because of this, the six conduction
band valleys are now grouped in a fourfold degenerate bands
(D4) at C-axis and twofold degenerate bands (D2) at off-C at a dis-
tance of about kxmin

� �0:37 p
a0

from the C-axis [13]. Due to the
higher quantized electron effective mass in the D4 valley along
the quantized directions, the corresponding energy minimum is
at a lower position than that of the D2 valley, thus making the
SiNW to be a direct band gap. With an increase in the SiNW
cross-section, this quantized effective mass converges to its
respective bulk value and the energy wave vector minimum tends
to an indirect band gap [3]. Thus in [100] SiNW structure, the en-
ergy band gap depends not only on the effective masses at the
band minima but also onto the subband energies along the con-
finement directions.

The [100] SiNW band structure diagram has been evaluated
using the ATK simulator and is shown in Fig. 1. Fig. 1a exhibits
the Si atomic configuration of a cleaved [100] with sp3 passivated
Hydrogen atoms. This has been done to remove the surface states
in the band gap region due to dangling Si bonds on the surface of
the nanowire. In this configuration we have considered the nearest
Si–Si and Si–H bond lengths to be 0.235 nm and 0.152 nm respec-
tively. The calculation of the energy band structure is done by
nearest neighbour sp3d5s⁄ tight binding method. In this method,
each atomic lattice of the configuration is considered by a sp3d5s⁄

basis and the spin–orbit interaction among them is ignored. In
addition, the k-point samplings of 1 � 1 � 21 grid were used with
mesh cut-off energy of 10 Hartree. The energy band structure of a
1.25 nm cross-sectional dimension of a [100] oriented SiNW has
been shown in Fig. 1b which clearly exhibits that the energy band
gap is a direct one at the C axis while the off-C valleys exhibits an
indirect energy band gap, a value higher that the former one, as al-
ready known from the existing studies [2,13]. Further, we notice
that the valley splitting even at room temperature at C and off-C
axis is significantly less. It should be noted that one may ignore
the importance of the valley splitting for the present analyses of
the determination of the band gap and transport effective electron
mass. By this, we mean that it is the lowest conduction splitted val-
ley and highest valance splitted valley which determines the gap
and the transport electron effective mass for that valley. Although
the valley splitting is extremely important for analysing mobility,
electrical resistance, etc. which incorporates the total number of
subbands and channels, however for the determination of energy
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