Solid-State Electronics 79 (2013) 285-289

Contents lists available at SciVerse ScienceDirect

Solid-State Electronics

journal homepage: www.elsevier.com/locate/sse

BaTiO₃ as charge-trapping layer for nonvolatile memory applications

X.D. Huang^a, Johnny K.O. Sin^b, P.T. Lai^{a,*}

^a Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong ^b Department of Electrical and Electronic Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

ARTICLE INFO

Article history: Received 4 June 2012 Received in revised form 1 September 2012 Accepted 9 September 2012 Available online 25 October 2012

The review of this paper was arranged by Prof. A. Zaslavsky

Keywords: Nonvolatile memory Charge-trapping layer High-k dielectric BaTiO₃

1. Introduction

Conventional floating-gate nonvolatile memories are approaching their scaling limits mainly due to their difficulties in maintaining high gate coupling ratio and suppressing cross talk between neighboring cells. Metal-Oxide-Nitride-Oxide-Silicon (MONOS) type nonvolatile memories have been considered as a promising candidate to replace the floating-gate counterpart because of their discrete charge-storage and coupling-free properties. Si₃N₄ ($k \sim 7$) was the first dielectric used as charge-trapping layer (CTL). In order to improve the data-storage capability by continual down scaling of the cell size, high-k dielectrics have been widely investigated to replace Si₃N₄ as CTL [1-5]. Fig. 1 and Table 1 summarize the band-gap (E_g) and the conduction-band offset with respect to SiO_2 (ΔE_c) of some typical high-k dielectrics used as CTL [6]. For a MONOS-type memory device, it tends to have thinner tunneling oxide for higher program/erase (P/E) speeds and lower operating voltages, whereas a thinner tunneling oxide may deteriorate its retention property. Therefore, there is a trade-off between high P/E speeds and good data retention. Among various high-k dielectrics, BaTiO₃ exhibits some distinguished properties including its large barrier height with respect to SiO₂ (conduction-band offset $\Delta E_c \sim 3.6 \text{ eV}$ [6] and high dielectric constant ($k \sim 100$ for the perovskite-type structure) [7], both of which are desirable for the charge-trapping layer of nonvolatile memories to improve

* Corresponding author. E-mail addresses: eesin@ust.hk (J.K.O. Sin), laip@eee.hku.hk (P.T. Lai).

ABSTRACT

The charge-trapping (CT) properties of BaTiO₃ are investigated by using an Al/Al₂O₃/BaTiO₃/SiO₂/Si structure. The memory device with BaTiO₃ as CT layer shows promising performance in terms of large memory window (8.6 V by ±12 V for 1 s), high program speed with low gate voltage (a V_{FB} shift of 2.9 V at +6 V, 100 µs), negligible V_{FB} shift after 10⁵-cycle program/erase stressing, and good data retention property (charge loss of 7.9% after 10⁴-s 125 °C baking time), mainly due to the high charge-trapping efficiency of the BaTiO₃ film, as well as the large barrier height between the BaTiO₃ charge-trapping layer and the SiO₂ tunneling layer.

© 2012 Elsevier Ltd. All rights reserved.

the P/E speeds and retention properties. However, there have been few reports focusing on BaTiO₃ as CTL for charge-trapping-type nonvolatile memory applications [8]. Therefore, we concentrate on the charge-trapping characteristics of BaTiO₃ based on MONOS capacitors in this work. Experimental results demonstrated that this memory device with BaTiO₃ showed large memory window, high P/E speeds with low operating voltage, as well as good reliability.

2. Experiment

MONOS capacitors with Al/Al₂O₃/BaTiO₃/SiO₂/Si were fabricated on p-type silicon wafers. After a standard RCA cleaning, 2-nm SiO₂ was grown on the wafers by thermal dry oxidation. Then 10-nm BaTiO₃ was deposited on the SiO₂ by sputtering using a BaTiO₃ target in an Ar/O₂ (24 sccm/6 sccm) mixed ambient at a pressure of 3.0 mTorr. Then 15-nm Al₂O₃ as blocking layer was deposited by means of atomic layer deposition using trimethylaluminum (Al(CH₃)₃) and H₂O as precursors at a substrate temperature of 300 °C. Following that, all the samples went through a post-deposition annealing (PDA) in N₂ ambient at 900 °C for 30 s. Then, Al was evaporated and patterned as gate electrode with a diameter of 100 µm, followed by forming-gas annealing at 300 °C for 20 min. The physical properties of the dielectric films were analyzed by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrical characteristics of the MONOS capacitors were measured by HP4284A LCR meter and HP4156A semiconductor parameter

^{0038-1101/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.sse.2012.09.005

analyzer. Their flat-band voltage (V_{FB}) was extracted from their measured C-V (capacitance–voltage) curve at the capacitance equal to the calculated flat-band capacitance [9].

3. Results and discussion

The inset of Fig. 2a shows the cross-sectional TEM image of the MONOS capacitor with BaTiO₃ as CTL, where the thickness of Al₂O₃/BaTiO₃/SiO₂ is determined to be 15.6 nm/10.6 nm/2.0 nm respectively. It is also observed that the BaTiO₃ film displays an amorphous phase, which can be further confirmed by the XRD spectrum with no peaks shown in Fig. 2a. It is worth mentioning that the charge-trapping film in an amorphous state is favorable for the reliability of the memory device because charge loss via grain boundaries and defects at the CTL/SiO₂ interface induced by lattice mismatch can be avoided [3]. These defects along the grain boundaries or at the CTL/SiO₂ interface can enhance charge leakage and degrade the dielectric quality, and so are considered as reliability degraders, instead of effective traps for charge storage. Fig. 2b exhibits the Ti $2p_{3/2}$ spectrum as well as the curve-fitting lines. Each curve-fitting line is assumed to follow the general shape of Lorentzian–Gaussian function. The Ti $2p_{3/2}$ spectrum can be decomposed into two components, corresponding to Ti-O bonding in the BaTiO₃ film (\sim 458.4 eV for Ti 2 $p_{3/2}$) [10] and Ti silicate at the BaTiO₃/SiO₂ interface (\sim 459.0 eV for Ti 2p_{3/2}) [11], respectively, where the Ti-silicate component displays a weak peak, indicating only a small fraction of BaTiO₃ transformed into silicate. This is consistent with the observation of the TEM image with no obvious interlayer at the CTL/SiO₂ interface. This non-stoichiometric Ti-silicate interlayer normally has a much smaller barrier height with respect to BaTiO₃ ($E_g \sim 3.3 \text{ eV}$) as well as more defects compared with that of thermal SiO₂ tunneling layer ($E_g \sim 9.0 \text{ eV}$) [6,10]. Consequently, an abrupt interface is desirable for good data retention properties because the charge-loss process related to the interlayer (e.g. defect-assisted tunneling) can be suppressed [12].

Fig. 3a depicts the 1-MHz *C*–*V* hysteresis characteristics of the memory device with BaTiO₃ as CTL. Sweep starts from inversion region to accumulation region and back to inversion region again, corresponding to electron trapping and de-trapping respectively. As the sweeping voltage increases from ±8 V to ±12 V, the hysteresis window, defined as the difference of V_{FB} corresponding to the backward and forward *C*–*V* curves, increases from 3.0 V to 7.6 V. The large window indicates a high trap density in the BaTiO₃ film. Moreover, the V_{FB} of the *C*–*V* loop is more positive than the neutral V_{FB} (V_{FB} of the fresh device). Therefore, electrons trapped in the CTL during the backward sweeping are not completely removed after

Fig. 1. Energy band-gap (E_g) and conduction-band offset with respect to SiO₂ (ΔE_c) of typical high-*k* dielectrics used as charge-trapping layer.

Table 1
Comparison of E_g and ΔE_c for typical high- <i>k</i> dielectrics used as charge-trapping layer.

310	2 BaliO ₃	1a ₂ O ₅	ZrO_2	HfO ₂	Y ₂ O ₃	S13N4	
$ \begin{array}{cc} E_g \left(eV \right) & 9.0 \\ \Delta E_c \left(eV \right) & 0 \end{array} $	3.3 3.6	5.8 3.2	5.8 2.1	6.0 2.0	6.0 1.2	5.3 1.1	

the forward sweeping, and thus a larger forward sweeping stress $(-16 \text{ V} \rightarrow +12 \text{ V})$ is required to bring the C-V curve back to the neutral position as shown in Fig. 3b. These phenomena should be associated with deep traps in the BaTiO₃ film [13] because electrons located in deep traps are more difficult to escape than those in shallow traps. As further increasing the forward sweeping stress $(-18 \text{ V} \rightarrow +12 \text{ V})$, the V_{FB} slightly shifts towards the negative direction with respect to the neutral state, indicating only a small amount of hole traps in the BaTiO₃ film. Different from SiO₂ with covalent bonds, the ionic bonding in BaTiO₃ suggests its poor ability to remove a defect once created. It has been reported that oxygen can escape from BaTiO₃ during high-temperature annealing in a N₂ protective ambient, thus leading to oxygen vacancies [14]. Moreover, the Ti⁴⁺ sites in titanate can also act as acceptor levels for electron trapping [15]. Both of these reasons can contribute to high electron-trap density in the BaTiO₃ film. Considering the Ti 2p XPS spectrum with the fully oxidized Ti⁴⁺ state shown in Fig. 2b, it is believed that few oxygen vacancies are present in the BaTiO₃ film [16].

Fig. 2. (a) XRD spectrum of the BaTiO₃/SiO₂ (10 nm/2 nm) film on Si substrate. The XRD sample received the same thermal cycles as the MONOS capacitor. The inset shows the cross-sectional TEM image of the MONOS capacitor with Al/Al₂O₃/BaTiO₃/SiO₂/Si. (b) Ti 2p_{3/2} XPS spectrum of the BaTiO₃/SiO₂ stack on Si substrate.

Download English Version:

https://daneshyari.com/en/article/748474

Download Persian Version:

https://daneshyari.com/article/748474

Daneshyari.com