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A B S T R A C T

Network backbone extraction techniques reduce the size of networks while trying to preserve their key topo-
logical and spatial features. Various backbone extraction algorithms have been proposed in different scientific
fields. Although of clear interest to transport geographers, backbone extraction techniques have been adopted
unevenly and in an ad hoc fashion in transport geography research. In this paper we therefore present a con-
ceptual and experimental comparison of backbone extraction techniques in a transport-geographical context,
and explore the new insights each technique can offer to enhance our understanding of the Southeast Asian
intercity air transport network (SAAN). We review six frequently-used methods, i.e. global weight thresholding
method (GWTM), k-core decomposition method (KCDM), minimum spanning tree method (MSTM), primary
linkage analysis method (PLAM), multiple linkage analysis method (MLAM), and the disparity filter algorithm
method (DFAM), and elaborate their analytical essence by applying them to extract the backbone of the SAAN.
The abstracted networks are compared in terms of their geographical and topological structures using the initial
network as a benchmark. This comparison is then used to point out the different techniques' potential in light of
different transport geography research applications.

1. Introduction

In recent decades, there has been burgeoning interest in the struc-
tural analysis of transport networks across modes and scales (e.g.
Ducruet et al., 2010; O'Kelly, 2016; Wang et al., 2009; Liu et al., 2016).
In these networks, nodes commonly represent spatial units such as ci-
ties, airports, ports, and stations, while edges identify transport-related
interactions between the nodes. In addition, edges are typically
weighted by capacity, frequency, distance, or the time it takes to
“travel” between nodes. In theory, the application of the ever-ex-
panding suite of network analysis techniques allows examining com-
plex transport systems at the level of nodes and dyads as well as the
network in its entirety (Barthélemy, 2011; Tsiotas and Polyzos, 2017).
To date, network-focused research efforts in transport geography have
primarily focused on four areas of enquiry: (1) the representation of
non-planar and planar transportation systems through networks (e.g.
Lin and Ban, 2013); (2) the analysis of the topographical and topolo-
gical features of transport networks (e.g. Lin, 2012); (3) tracing the
spatial and structural evolution/dynamics of these networks over time
(e.g. Ducruet, 2017); (4) and modelling transport networks with the
specific purpose of uncovering their underlying mechanisms (e.g.
Zhang et al., 2016).

The visualization, description and analysis of transport networks
continue to face a range of challenges. For example, the fact that
transport networks are spatial networks where nodes are preferably
visualized in their exact geographical location makes producing trans-
port flow maps a complex proposition (Vertesi, 2008). Dense networks
with locally/regionally clustered edges in particular pose challenges
when trying to explicitly convey the overall structure (Hennemann,
2013). Furthermore, analytically trivial edges in a network may give
rise to biases in the measurement and interpretation of network
topologies (Radicchi et al., 2011). For these and a number of related
reasons, it is often helpful to extract the “backbone” of a network: a
simplified version that is reduced in size – i.e., some edges and/or nodes
are deleted – but retains the most “valuable” information contained in
the original network. The abstracted network can be mapped and ex-
plored with significantly less effort, and this without too much com-
promising the real-world remit of the network.

To achieve this goal, a large number of methods have been devel-
oped. These methods aim to de-densify networks by extracting their
“backbone(s)”, and range from simple thresholding (Derudder and
Taylor, 2005) to more statistically-grounded methods such as disparity
filter algorithms (Serrano et al., 2009). Needless to say, these methods
are not unique to transport geography: they have for example been
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discussed and applied in fields as disparate as physics (Gemmetto et al.,
2017), sociology (Neal, 2014), biology (Darabos et al., 2014), and
computer science (Foti et al., 2011). Nonetheless, it can be noted that
oftentimes the illustrative examples put forward in these domains are
transport and infrastructure networks, reinforcing the broader re-
levance of the transport geography/network analysis-nexus. In spite of
this, the adoption of the ideas developed in other scientific fields has
been limited and uneven in transport geography itself (cf. Ducruet and
Beauguitte, 2014).

A few comparative studies have been conducted by physicists,
matching simplification methods to real-world networks (e.g. Blagus
et al., 2014) and by sociologists, comparing extraction approaches for
identifying statistically significant edges in social networks (e.g. Neal,
2013). However, to date there has been no systematic comparison of
the relevance of different backbone extraction techniques in transport-
geographical research. We therefore present a comparative analysis of
key network backbone extraction techniques, discussing their practical
usefulness by means of an empirical study of the Southeast Asian in-
tercity air transport network (SAAN). This implies, of course, the po-
tential problem of using a very specific example to derive generic
claims about the usefulness of techniques. However, we believe our
findings are broadly robust in the sense that this network shares
common characteristics with many other transport networks and non-
planar urban networks. Furthermore, we will use findings to discuss
relevant applications for transport and urban geography studies more
broadly, focusing on which technique works best under what circum-
stances and/or for what research objective.

The reminder part of this paper is organized as follows. We begin by
reviewing six multidisciplinary backbone extraction techniques that are
either widely adopted in geography or seem to hold potential for geo-
graphical research, and illustrate these techniques by applying them to
a toy network. This is followed by a brief description in Section 3 of the
data and analytical framework used to analyse the SAAN. Section 4
presents the empirical results, compares the main spatial and topolo-
gical structures highlighted in each abstracted network with the ori-
ginal network as a benchmark, and use results to shed light on the
SAAN as well as well as discussing broader applications of each method.
The paper is concluded with a summary of key findings, a discussion of
limitations, and possible avenues for future work.

2. Techniques for backbone extraction

2.1. Overview

Network backbone extraction has been studied in a wide range of
disciplines under different names, such as network simplification
(Blagus et al., 2014), sparsification (Mathioudakis et al., 2011), ab-
straction (Zhou et al., 2012), and reduction (Kim et al., 2011). Given
that most transport networks are one-mode networks which consist of a
single set of inter-connected nodes (Scott and Carrington, 2011), we
will review backbone extraction techniques for one-mode networks
thus excluding techniques for two-mode projections where the original
networks feature connections between two different sets of nodes
(Liebig and Rao, 2016).

In general, network backbone extraction techniques fall into two
broad categories: “coarse-graining” and “edge removal” methods.
Coarse-graining methods merge nodes sharing common attributes to-
gether and replace them by a single, new node in the abstracted net-
work (Itzkovitz et al., 2005). The differences between approaches
within this overarching logic ultimately relate to the adopted “com-
pression” technique, i.e., the algorithm to identify communities and the
rules of transformation. However, as most transport geography related
research questions require retaining original nodes and edges, coarse-
graining methods tend to be less appealing in our research domain.

Edge-removing techniques focus on removing rather than trans-
forming nodes and edges; they single out the most “relevant” nodes and

edges and subsequently eliminate the least significant ones. This can be
achieved by edge sampling for binary networks (Blagus et al., 2014)
and edge filtering/pruning for weighted networks (Bu et al., 2014). For
binary networks in which 0 and 1 respectively denote the absence and
presence of an edge, the abstracted network is produced by sampling
the original network based on its goodness of fit to original topologies
such as degree distributions, path length, assortativity and clustering
coefficients (Newman, 2003). The edge sampling methods range from
random node/link selection to snowball sampling, random walk, forest
fire, and so forth (Lee et al., 2006). Although useful in several contexts,
they are not considered in this paper since most geographical research
has a vested interested in weighted networks that often combine both
structural and functional aspects (Chawla et al., 2016).

In light of this, in this paper we focus specifically on the filtering/
pruning techniques to extract the backbone of one-mode weighted
networks. This class of methods typically employs a bottom-up strategy:
they start by defining a criterion for a nodewise or edgewise ex-
amination of their “importance” or “relevance” to the network, after
which the redundant edges/nodes are removed in a stepwise procedure.
Different backbone extraction techniques reflect the use of different
criteria for identifying node/edge “importance” or “relevance” to the
network, and thus result in more or less different backbones.
Understanding both the underlying logic and the empirical outcome of
different techniques is therefore of the utmost importance for re-
searchers, and in this paper we therefore explore approach and out-
comes of key techniques, with a focus on transport-geographical ap-
plications. We begin our review and illustration of the different
methods by using a “toy network” (Fig. 1) that is broadly in the spirit of
our SAAN example. It depicts a hypothetical transport network of
connections between 11 Southeast Asian cities; connections are un-
directed and weighted by passenger flows. Table 1, in turn, presents the
backbones of the toy network as extracted by the 6 methods that will be
discussed in the remainder of this section. The selection of the six
methods is based on their previous adoption in transport geography
research (e.g. primary linkage analysis) or because of their specific
potential for geographical research in general and transport-geo-
graphical research in particular (e.g. the disparity filter algorithm).

2.2. Global weight thresholding

The most common and straightforward method is (variations to)
global weight thresholding method (GWTM), a technique that only
retains edges whose weights exceed a predefined threshold. The
threshold can be defined as an absolute value, but also as a certain
proportion of the maximum observed edge weight or the mean weight
(Neal, 2013). GWTM has been extensively used since it works effi-
ciently and produces networks that are clearly much sparser. However,
most real-world networks have their edge weights unevenly distributed
at multiple scales, thus making this method suffer from arbitrariness,
structural bias and uniscalarity (Neal, 2014). To lessen the arbitrari-
ness, Derudder et al. (2014) and Dai et al. (2016) propose to identify an
optimal value in that the smallest network density associated with the

Fig. 1. Toy network (numbers next to edges represent edge weights).
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