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Electric vehicles (EVs) are predicted to increase in market share as auto manufacturers introduce more
fuel efficient vehicles to meet stricter fuel economy mandates and fossil fuel costs remain unpredictable.
Reflecting spatial autocorrelation while controlling for a variety of demographic and locational (e.g., built
environment) attributes, the zone-level spatial count model in this paper offers valuable information for
power providers and charging station location decisions. By anticipating over 745,000 personal-vehicle
registrations across a sample of 1000 census block groups in the Philadelphia region, a trivariate
Poisson-lognormal conditional autoregressive (CAR) model anticipates Prius hybrid EV, other EV, and
conventional vehicle ownership levels. Initial results signal higher EV ownership rates in more central
zones with higher household incomes, along with significant residual spatial autocorrelation, suggesting
that spatially-correlated latent variables and/or peer (neighbor) effects on purchase decisions are present.
Such data sets will become more comprehensive and informative as EV market shares rise. This work’s
multivariate Poisson-lognormal CAR modeling approach offers a rigorous, behaviorally-defensible

framework for spatial patterns in choice behavior.

© 2015 Elsevier Ltd. All rights reserved.

1. Motivation

As auto manufacturers introduce a variety of new vehicles to
meet stricter fuel economy standards in the U.S. and abroad, and
driver concerns regarding long-term energy prices remain high,
hybrid electric vehicle (HEV), plug-in hybrid electric vehicle
(PHEV), and battery electric vehicle (BEV) sales are on the rise
(Schweinberg, 2013). However, according to Consumer Reports’
Car Brand Perception Survey (Bartlett, 2012), range anxiety
remains consumers’ top concern consumer regarding a possible
EV purchase. Spatial patterns in growing EV ownership may
illuminate zone-level characteristics that increase or alleviate
owner/consumer ‘“range anxiety” (i.e., a user’s concern for being
stranded with a fully discharged battery and no reasonable
recharge option (Tate et al., 2008)). As illustrated by Khan and
Kockelman (2012), a 75-mile all-electric range (AER) BEV (like
the 2013 Nissan LEAF) may be a very reasonable vehicle for 27%
of single-vehicle households and nearly 70% of multiple-vehicle
households in Seattle to own. Khan and Kockelman worked with
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existing travel patterns and assumed that households will charge
the vehicle each night and are willing to charge more than once
a day or find another travel option (e.g., a relative’s car or rental
vehicle) on the 3 days a year that those households are likely to
exceed the BEV's range. Recent evidence from the U.S.
Department of Energy’s and ECOtality’s EV Project (Smart et al.,
2013) suggests that 73% of miles driven by Americans in a Chevy
Volt stay within its 35-mile (EPA-rated) AER (thereby avoiding
much gasoline use in this PHEV). Studies suggest that range anxi-
ety may fall as drivers become more familiar with EV technology
and EV use (see, for example, Wellings et al., 2011; Taylor, 2009).
As with open-road tolling, adaptive cruise control, and other
relatively new transport policies and technologies, it seems very
possible that potential owners will worry less about EV range
limitations as they are exposed to EVs on local roads, in neighbors’
driveways, and nearby parking garages (Mau et al., 2008). Related
to this, Axsen et al. (2009) surveyed over 1000 vehicle owners in
Canada and California and found that willingness-to-pay (WTP)
for HEVs rose with higher (existing) HEV market penetration rates.
Our study econometrically models ownership rates of EVs and
conventional vehicles across Philadelphia neighborhoods, while
allowing for such neighbor (spatial autocorrelation) effects; it
applies a new multivariate count model, with both
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spatially-lagged and correlation

opportunities.

(aspatial) cross-response

2. Previous studies

Most EV forecasts are simply an aggregate market share across a
nation or region, with estimates widely varying. For example,
Navigant Research (2013) projects the worldwide sales of light
duty PEVs (including both PHEVs and BEVs) will reach 3 million
units by 2020, or approximately 3% of the total LDV sales. The
U.S. National Research Council (NRC, 2010) predicted 13 million
EVs on U.S. roads by 2030 (4% of total fleet) in the most probable
scenario and 40 million EVs (13.3% of total fleet) in the maximum
practical case, while the U.S. Energy Information Administration
(EIA, 2013) recently forecasted just 3% of all U.S. light duty vehicle
(LDV) sales will be EVs by 2040. Simulating consumer behavior
under a business-as-usual (BAU) model, Clement-Nyns et al.
(2010) projected EVs to reach 30% of the Belgian
passenger-vehicle fleet by 2030. McKinsey’s (2011) survey sug-
gested that in three of the world’s “megacities” (New York City,
Shanghai, and Paris), EVs may hit 16% of vehicle sales by 2015.
Within the U.S. northeast corridor, Pike Research (2011) projects
that Washington, DC and Delaware will have the highest annual-
ized penetration rates of EVs by 2017, at 4.6% and 4.5%, respective-
ly. Paul et al.’s (2011) microsimulation of U.S. household holdings
forecasted 7.6% of the fleet to be HEVs and PHEVs by 2035 under
BAU, and 13.1% under a feebate plus doubled-gas-price scenario,
ceteris paribus. Examining both demand (for vehicles, batteries,
and gasoline) and supply constraints (on production), Neubauer
et al. (2012) projected California’s PHEV plus BEV population to
hit 500,000 sometime between 2018 and 2020. After tracking the
EV market for 13 years, IDTechEX predicts that 35% of all vehicles
in the world will be electric by 2025, with a likely mix of 25%
hybrids and 10% BEVs (Harrop and Das, 2012). With such meaning-
ful market share changes on the horizon, an ability to predict
which households or neighborhoods are most likely to own such
vehicles can provide important insights and opportunities for
power-grid planning (e.g., updating transformers in certain loca-
tions), transportation investments (e.g., identifying where public
charging stations should be installed for maximum utilization),
and air quality policy-making (e.g., forecasting ozone level changes
when more vehicle-miles are electrified).

At the other end of the data spectrum, many researchers have
employed discrete choice models at a disaggregate (individual or
household) level to explore various vehicle ownership decisions.
For example, Brownstone et al. (1996) analyzed data from a stated
preference survey on alternative-fuel vehicles and found that
two-vehicle households with children express a greater WTP for
cleaner (emissions-reducing) vehicles, as compared to childless
households. Erdem et al. (2010) employed an ordered probit (OP)
model to examine Turkish consumers’ WTP for HEVs and found
that higher-income females, with more education and concerns
about global warming, are more likely to purchase HEVs. The
relationship between income and vehicle preference tends to be
complicated by household size: Paul et al. (2011) found that house-
holds with higher household income per member tend to prefer
smaller vehicles, but larger households generally prefer larger
vehicles (for seating-capacity reasons).

This research addresses a gap in our current understanding of
EV ownership decisions by examining the effects of demographic
and land use characteristics at the neighborhood or zonal level
(here the Census block group), rather than at a regional level or
individual/household level. In this way, the work is able to quantify
spatial autocorrelation or “neighbor effects” that can emerge in the
adoption of new technologies, and to predict adoption rates over

space, without requiring details on individuals. There have been
many previous studies on the influence of land use characteristics
on vehicle ownership, but none specific to EV ownership with a
spatial component, as employed in this study. For example, higher
residential densities are associated with lower vehicle ownership
and usage levels (e.g., Zhao and Kockelman, 2002; Fang, 2008).
Holding other household attributes (control variables) constant,
Brownstone and Golob (2009) predicted density reductions of
1000 housing units per square mile (or 1.56 units per acre) to be
associated with another 1000 miles per year of vehicle-miles trav-
eled and 65 more gallons of fuel consumed per household (with 20
gallons of this difference accounted by choice of more fuel-efficient
vehicles in higher-density settings). The choice of higher
fuel-economy vehicles may be largely attributable to lower
light-duty truck! (LDT) ownership in such settings: Brownstone
and Fang’s (2009) Bayesian multivariate OP model associates a 50%
residential density increase with a modest but statistically sig-
nificant reduction on LDT ownership levels, and a 610-mile annual
per-truck VMT decrease. In the same study, demand for passenger
car ownership was estimated to be inelastic with respect to residen-
tial density (Brownstone and Fang, 2009), but fuel economy can
change significantly within the car fleet, leading to EV purchases,
rather than say, large luxury cars, and thereby offer substantial ener-
gy savings. Using a multiple discrete-continuous extreme value
(MCDEV) specification, Bhat et al. (2009) also found that smaller
vehicle sizes are more prevalent in neighborhoods high in both
residential and commercial densities. Beyond simple density mea-
sures, Potoglou and Kanaroglou (2008) found vehicle ownership to
depend somewhat on land use diversity and transit proximity.
Khan et al. (2014) also investigated the linkage between vehicle
ownership and a host of built environment factors, including net-
work structure, bus stop density, land use mix and jobs density,
using a standard negative binomial model.

Spatial autocorrelation across observational units is prevalent
in transportation data sets, such as commodity flow prediction
(LeSage and Polasek, 2005), land development decisions (Chakir
and Parent, 2009; Wang et al., 2014), and crash prediction (e.g.,
Levine et al, 1995a, 1995b; Wang et al, 2009). In a
continuous-response setting, overlooking spatial structure will
not cause biased estimates of the coefficients, but loss of efficiency
and precision, when the error term exhibits spatial autocorrelation.
In a discrete-response setting, overlooking spatial structure,
whether it occurs in the error terms or in the response variables,
will likely cause biased estimates.

Spatial models can be designed to study discrete count data,
such as vehicle ownership. A good example is found in Adjemian
etal.’s (2010) investigation of vehicle ownership at the census tract
level while controlling for spatial interdependence and various
covariates - like income and population density. In a spatial logit
model setting, they found that vehicle ownership exhibits spatial
dependence, even after controlling for many zonal attributes, and
those coefficient estimates tend to change between spatial and
aspatial models, with spatial models surpassing aspatial models
in model goodness-of-fit. These findings are echoed in Wang and
Kockelman (2013), which compared a multivariate conditional
autoregressive (CAR) model with an aspatial multivariate count
model, and with a spatial count model that excludes
cross-correlation between two crash severity levels.

This study combines data already collected on a regular basis by
Pennsylvania’s Department of Motor Vehicles and the U.S. Census
to examine EV ownership patterns at a neighborhood level. It
expands on the existing literature on vehicle ownership by

" In the US. the light-duty truck definition includes cargo vans, minivans,
sport-utility vehicles, and pickup trucks weighing less than 8500 lbs loaded (i.e.,
the gross vehicle weight rating).
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