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a b s t r a c t

This paper summarizes the literature on spatial filtering (SF) for analysis of spatial data. Given the scar-
city of its application in transportation and its fledgling nature, preliminary case studies were conducted
using continuous and discrete response data sets, for land values and land use, in comparison with results
from spatial autoregressive (SAR) models with distance decay parameters estimated using Bayesian tech-
niques. For both the continuous land value and binary land use cases, the SF approach demonstrates great
potential as a worthy competitor to more conventional SAR-based models. In addition to offering high fit
statistics, somewhat shorter computing times, and more straightforward computations, the SF approach
makes explicit the patterns of spatial dependency in the land value and land use data. By controlling for
these spatial relationships, the SF approach yields more reliable marginal effects of policy variables of
interest. Model results confirm the important role of transportation access (as quantified using distances
to a region’s central business district, and various roadway types).

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Spatial relationships typically exist across people and locations
in transportation, land use, and demographic data sets. They can be
summarized into two types of spatial effects: spatial heterogeneity
and spatial autocorrelation (Anselin, 1988). Geographically
weighted regression (GWR) is commonly used to characterize spa-
tial heterogeneity, by estimating parameters for each site or obser-
vational unit based on all observations within a neighborhood
(Fotheringham, 2003; Páez, 2006). A common treatment for spatial
autocorrelation is to specify a spatial structure directly, such as a
spatial autoregressive (SAR) or spatial error (SEM) model (Anselin,
1988; Anselin and Hudak, 1992; LeSage and Pace, 2009; Ibéas et al.,
2012). Work on discrete states of land-use change with such spec-
ifications can be found in Chakir and Parent’s (2009) spatial multi-
nomial probit model (for cross-sectional data), Munroe et al.’s
(2002) series of binary probit and random-effects probit models
(using panel techniques), and Wang and Kockelman’s (2009a,
2009b, 2009c) dynamic spatial ordered probit model with a tem-
poral component.

Most applications to date rely on specific functional forms (such
as SAR and SEM) and arbitrarily pre-determined weight structures
to anticipate spatial structure in the data. Several issues can limit
the use of specific functional forms in addressing spatial

autocorrelation. McMillen (2004) noted how functional misspecifi-
cations may lead to spatial autocorrelation and advocated the use
of non-parametric methods, to avoid a priori assumptions of model
form. Computing effort is another important factor to consider, as
demonstrated in Wang et al.’s (2011) pursuit of an estimable dy-
namic spatial multinomial probit specification. Essentially, more
complicated models require more complex estimation strategies,
such as Bayesian sampling from large-size truncated normals (for
latent response variables, in the case of multinomial probit, for
example); issues of parameter identification, sample size limita-
tions, and a model’s functional flexibility can and do emerge. An-
other serious challenge relates to computing the log-determinant
of a SAR specification: |In - qW|, where In is an n by n identity ma-
trix, q is the degree of spatial autocorrelation and W is the connec-
tivity or weight matrix. This is especially time-consuming when n
is large.

Eigenvector-based spatial filtering, as discussed by Griffith
(2007) and Dray et al. (2006), is a relatively new technique for anal-
ysis of spatial data sets, and it appears to offer much promise. This
technique uses orthogonal and uncorrelated map patterns (repre-
sented as eigenvectors obtained from a contiguity- or distance-
based weight matrix characterizing the data set’s spatial structure)
to control for such relationships. Another advantage of this filtering
approach is the orthogonality of the eigenvectors, facilitating step-
wise variable addition to the model specification. This is also known
as ‘‘forward regression,’’ as applied in Griffith and Peres-Neto
(2006) and Moniruzzaman and Páez (2012). A potential drawback
lies in computing the ‘‘eigenfunctions’’ (a general term for the
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eigenvectors and their associated eigenvalues) for large data sets,
which can be a formidable task.1 However, in comparison with the
more widely used SAR and SEM approaches to spatial autocorrela-
tion, such computations may be reasonable. This is especially true
for transportation-related contexts, given the relative lack of such re-
search to date, and the highly spatial nature of transport applications.

A major advantage of eigenvector-based spatial filtering, com-
pared to other techniques (such as SAR and geographically
weighted regression), is that it explicitly identifies the clustering
patterns, which is critical information for land-use forecasting
and other forms of spatial-data analysis. Other spatial techniques
mostly focus on evaluating the magnitude of spatial effects with
an underlying assumption that the spatial effect is universal across
the sample. In practice, land developers, transport planners, and
policy makers are more interested in the source and pattern of
the spatial dependency: If the development of a parcel is influ-
enced by its neighbors, which neighbors are the most influential
and to what extent? Where are they located? Do other neighbors
also depend on this one, and in which way? Eigenvector-based
spatial filtering helps answer such questions. The approach decom-
poses the spatial dependency into several loadings of synthetic
covariates (or eigenvectors) and ranks the clustering effects cap-
tured by these eigenvectors. Influential neighbors are identified
by examining a visual representation of the selected eigenvectors.

The following sections discuss in some detail the development
of spatial filtering techniques. Two sets of case studies, analyzing
the effects of travel access on (continuous) land values and (binary)
land-development data, are provided for comparison to a special
SAR model with a flexible weight matrix. Given the advantages
of an eigenfunction-based approach among existing spatial filter-
ing techniques, all comparisons are conducted using this technique
and the special SAR models (which enable estimation of direct as
well as indirect effects of covariates, in contrast to an SEM specifi-
cation, whose marginal effects are computed like those in an aspa-
tial model). The land-use-change and land-value data used here tie
transportation interests through trip generation and attraction
rates, access valuation, right-of-way costs, and so forth.

2. A background on spatial filtering

Apart from the observed covariates, also known as the system-
atic component, spatial filtering techniques rely on weight-matrix
eigenvectors, which serve as synthetic explanatory variables repre-
senting the data set’s spatial structure. These variables add flexibil-
ity to the model and have been called the model’s non-parametric
component (Tiefelsdorf and Griffith 2007). Different methods for
generating these variables lead to two main types of spatial filter-
ing in the literature: eigenfunction-based procedures, as discussed
in Griffith (2007) and Dray et al. (2006), using a contiguity- or dis-
tance-based weight matrix, and Getis’ (1990, 1995) G-statistics-
based approach.

The main difference between the two approaches is the manner
in which the original variables are decomposed. Getis (1990, 1995)
used the difference between observed and expected local spatial
statistics to separate spatial from non-spatial effects. In an unusual
paper, Getis and Griffith (2002) compared their two approaches
using government expenditures per capita across US states. Their
distinct filtering methods yielded similar goodness-of-fit statistics,
although the z-score of the Moran’s I test statistic for residuals
switched signs: it was weakly negative in Getis’ model and weakly
positive in Griffith’s model. In addition, parameter estimates from
both approaches were similar to those of a SAR model. Importantly,

the eigenfunction-based approach was deemed preferable, thanks
to its flexibility for application in non-linear model specifications.
By contrast, Getis’ approach requires that analysts have variables
with a natural origin and a linear model specification, thereby lim-
iting its use (Patuelli et al., 2011). In the coming discussions, this
paper refers only to the eigenfunction-based approach.

The crux of the eigenfunction-based spatial filtering lies in the
linkage between eigenfunctions (i.e., the eigenvectors and corre-
sponding eigenvalues) and spatial autocorrelation. Essentially,
the (exogenously specified) W matrix’s eigenvectors are used as
supplemental covariates in the regression, to ‘‘filter’’ out spatial
autocorrelation, thereby allowing for potentially more efficient
estimation of primary covariates’ parameters (Griffith 1996).
Eigenfunction decomposition has been widely used in fields like
control theory and imaging, but its usage in spatial analysis is rel-
atively new. A thorough interpretation of eigenfunctions from a re-
gional/spatial perspective can be found in Griffith (1996), who uses
a 9-by-9 regular square grid and 3 cases of Canada’s urban census
tracts to provide natural interpretations of the eigenvectors associ-
ated with the largest eigenvalues. As Griffith increased his sample
size (n), he observed greater agreement between the eigenvalues of
the weight matrix W and the eigenvalues of its transformation ma-
trix X = (I � 11T/n)W(I � 11T/n), with their correlations ranging
from 0.97 for the small n case to approximately 1.0 for the large
n case. Essentially, as n increases, the eigenvalues of X will show
upper-bound convergence to the eigenvalues of W (Griffith, 1996).

Moreover, the transformation matrix (X) is guaranteed to have
an eigenvector of purely 1=

ffiffiffi
n
p

values, corresponding to an eigen-
value of unity. One advantage of using X instead of W is that X’s
eigenvectors are orthogonal (and thus uncorrelated). In other
words, X’s eigenvectors look a bit like the scaled principal compo-
nents (see, e.g., Jolliffe, 2002) of the matrix W, though their math-
ematical derivations are quite different.

2.1. Spatial filtering based on X

The extreme (most negative and positive) values of Moran’s I for
a specific spatial configuration (represented by connectivity matrix
C or its row-standardized counterpart W) can be expressed as a
function of X’s eigenvalues, as per Tiefelsdorf and Boots (1995)
and De Jong et al. (1984)2:

Moran0s I ¼ MI ¼ n
10W1

� eigvalueðXÞ ð1Þ

In other words, one can compute Moran’s I for any set of numer-
ical values (y) observed in any spatial data set of size n, and these
are the normalized/scaled eigenvalues of X. Moreover, the first
eigenvector of matrix X (denoted as E1) is the vector of values
yielding the strongest spatial autocorrelation (thus having the larg-
est MI value) in the space W. Thus, it is the most important princi-
pal component of the spatial structure, as encoded by W. X’s
second eigenvector (E2) offers the second largest eigenvalue or
MI, and is orthogonal to (and thus uncorrelated with) the first
eigenvector (Griffith, 2000).

2.2. Selection of eigenvectors

A key issue for filtered regression applications is the strategy to
select meaningful eigenvectors to embody compelling spatial
interactions. As noted above, one may set a single MI threshold
for all eigenvectors’ inclusion (Griffith, 2000; Patuelli et al.,
2011). In other words, MIs can be computed for each eigenvector,
and only eigenvectors with MIs exceeding a target/threshold value

1 Fortunately, when the data come from a regular, square grid, computing
eigenvalues and vectors can be done directly and quickly, in closed form.

2 Eq. 1 can be simplified to MI = eigvalue (X) for row-standardized weight matrices,
W, because n

1W1 ¼ 1.
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