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a b s t r a c t

Threshold voltage shift due to quantum confinement in surrounding gate MOSFETs with anisotropic
effective mass is calculated from the solution of 2D Schrödinger equation in elliptic coordinates. The solu-
tions are of the Mathieu function type. It is shown that for some intermediate range of radius in silicon,
several subbands need be taken into account to obtain accurate threshold voltage shifts. However, for
small radius, only the lowest subband need be considered, and even anisotropic effective mass can be
replaced by reduced isotropic effective mass, for which Bessel function is sufficient.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

To extend CMOS scaling down to 10 nm gate length and beyond
[1], multiple-gate (MG) MOSFETs have been intensively and exten-
sively studied because of their higher current drive and better
short-channel characteristics [2]. In addition to short-channel ef-
fects (SCEs) [3], quantum-mechanical (QM) effects play more and
more important roles in aggressively scaled devices, especially
those with nanowire-like Si body (i.e., 2D quantum confinement),
such as triple-gate (TG), quadruple-gate (QG), and surrounding-
gate (SG) MOSFETs [2]. QM effects manifest themselves in two
ways [3]. First, the slope of inversion charge versus gate voltage
curve is degraded because the inversion charge distribution is
pushed further into Si, i.e., away from the oxide interface. Second,
the threshold voltage (Vt) is shifted to a higher value due to the
higher quantized subband energies. Previously, the QM Vt shift
has been analytically modeled for conventional bulk MOSFETs
[3], double-gate (DG) MOSFETs [4], and also TG and QG MOSFETs
[5]. In this paper, we develop an analytic model for quantum con-
finement induced Vt shift in undoped SG MOSFETs, a type of MG
MOSFETs with circular cross-sections. To deal with the ellipsoidal
constant energy surfaces of the Si conduction band, which are in-
duced by anisotropic effective mass, we use elliptic coordinates,
where Mathieu functions are invoked [6].

2. Analytic model

Following the general method of Stern and Howard [7] for films,
Bescond et al. [8] have proposed the effective-mass approach for n-
type nanowire MOSFETs with arbitrary orientation very recently.
To model the Vt shift caused by quantum confinement in Si nano-
wire MOSFETs, it is reasonable to make use of Boltzmann statistics
as well as parabolic approximation in the weak inversion region.
Furthermore, the mobile charge term in the Poisson equation can
be neglected, leading to the decoupling of Poisson’s and Schröding-
er equations. Therefore, in the undoped or lightly-doped body, the
potential is almost constant [9], and we can assume the 2D quan-
tum well to be flat-bottomed with infinitely high potential
barriers.

For an arbitrarily oriented undoped or lightly-doped cylindrical
SG MOSFET, whose schematic cross-section diagram is illustrated
in Fig. 1, the total energy under weak inversion condition is given
by

E ¼ E0 þ
�h2k2

y

2md
ð1Þ

where E0 is the bottom energy of each discrete subband, determined
by the eigenvalue equation
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Here, md is the density-of-state (DOS) effective mass. According
to (2), we have chosen a ðx; zÞ coordinate to diagonalize the re-
duced 2� 2 reciprocal effective-mass tensor. mx and mz are the
corresponding effective masses in the x- and z-directions, respec-
tively. We choose the coordinates such that mx P mz.

For the special case of mx ¼ mz, eigenvalues of E0 can be easily
obtained with Bessel functions [10]:

E0 , Emn ¼
2�h2qmn

mxR2 ð4Þ

where qmn is determined by the boundary condition

Jmð2
ffiffiffiffiffiffiffiffi
qmn
p Þ ¼ 0 for m ¼ 0;1;2; . . . ð5Þ

Here, JmðqÞ denotes the Bessel function of the first kind. The
subscript n indicates that 2

ffiffiffiffiffiffiffiffi
qmn
p

is the nth zero of JmðqÞ. There is
an extra two-fold degeneracy for m – 0.1

For the general case of mx > mz, by making a coordinate scaling:
X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx=m0

p
x and Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mz=m0

p
z, where m0 is the free electron

mass, (2) can be transformed to
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with the boundary condition

fðX; ZÞ ¼ 0; where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0

mx
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The new boundary is an ellipse instead of a circle. Therefore, to
solve the eigenvalue equation (2) generally, we need to use the
elliptic coordinates, and deal with Mathieu functions based on sep-
aration of variables. The solution in the elliptic coordinates is given
by [6]

fðn;gÞ ¼
X1
m¼0

AmCmðn; qÞcmðg; qÞ þ
X1
m¼1

BmSmðn; qÞsmðg; qÞ ð8Þ

where the elliptic coordinates ðn;gÞ is corresponding to ðX; ZÞ by

X ¼ a cosh n cos g ð9Þ
Z ¼ a sinh n sin g ð10Þ

with a defined as the focal distance of the elliptical boundary given

by

a ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx �mz

m0

r
: ð11Þ

Note that we choose mx > mz. In Eq. (8), Am and Bm are coeffi-
cients; cmðn; qÞ and smðn; qÞ are the Mathieu functions with order
m of cosine and sine types, respectively; Cmðn; qÞ and Smðn; qÞ are
the modified Mathieu functions with order m of cosine and sine
types, respectively.2 Boundary condition yields

Cm nb; q
ðcÞ
mn

� �
¼ 0 for m ¼ 0;1;2; . . . ð12Þ

or

Sm nb; q
ðsÞ
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� �
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Here, nb is defined by nb ¼ cosh�1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx=ðmx �mzÞ

p
. The subscript n

indicates that nb is the nth zero of Cmðn; qðcÞmnÞ and Smðn; qðsÞmnÞ. Energy
is related with qðlÞmn (l = c or s) through the following equation

E0 , EðlÞmn ¼
2�h2qðlÞmn

ðmx �mzÞR2 ð14Þ

Within the framework of quantum mechanics, the total mobile
charge density per unit gate length NQM is given by

NQM ¼ N1D exp
Ef � EQM

s
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with
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Here, EQM
s is the quantum-mechanically calculated conduction band

edge. The subscript k denotes valley index. g and md are the degen-
eracy and the DOS effective mass, respectively. EðlÞmn and Emn are the
subband energies for the cases of mx > mz and mx ¼ mz, which can
be solved through Mathieu and Bessel functions, respectively. The
coefficient D is responsible for the degeneracy which comes from
symmetry: D ¼ 1 for m ¼ 0; D ¼ 2 otherwise. Without QM effects,
the classical theory leads to

NCL ¼ pR2N3D exp
Ef � ECL

s

kBT

 !
ð18Þ

where ECL
s is the classical counterpart of EQM

s , and N3D is the 3D effec-
tive DOS, i.e., N3D ¼ Nc for the conduction band. Equating NQM in
(16) to NCL in (18) yields an analytic model for the shift of the QM
potential compared to the classical one:

DwQM
s ¼ EQM

s � ECL
s

�q
¼ kBT

q
ln

pR2N3D

N1D

 !
: ð19Þ

Knowing DwQM
s , one can easily calculate the Vt shift due to the

QM effects as [3]

DVQM
t ¼ S

60
DwQM

s ð20Þ

Fig. 1. Schematic cross-section diagram of an SG MOSFET.

1 The twofold degeneracy is a result of symmetry. Actually, we have another group
of characteristic values determined by J�m 2

ffiffiffiffiffiffiffiffi
q0mn

p� �
¼ 0, where m ¼ 1;2; . . . Based on

the circular symmetry, it is not surprising that q0mn ¼ qmn , which finally leads to the
twofold degeneracy.

2 The Mathieu and the modified Mathieu functions with order m of cosine (sine)
type may be denoted in some references as cemðn; qÞ (semðn; qÞ) and Cemðn; qÞ
(Semðn; qÞ), respectively.
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