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A B S T R A C T

Carbon emissions per unit of GDP (also called carbon emission intensity, CEI) can be utilized to measure regional
carbon emission performance. In this study, structural decomposition analysis (SDA) and quantile regression are
employed to investigate the factors that drive changes in CEI in China. Based on input-output SDA, CEI in China
during 1992–2012 is decomposed from the perspectives of the total economy and economic sectors. The results
specify that the industrial sector is the key sector for energy conservation and emission reduction. Energy ef-
ficiency contributes the most to CEI reduction, whereas input structure, final demand structure, and final pro-
duct structure are factors that hinder reductions. Furthermore, energy mix, technical progress, industrialization
index, and final consumption rate are introduced as proxy variables. To reveal the changes of influencing factors
with CEI increasing, the effects of these proxy variables on CEI are explored by quantile regression with panel
data of 30 provinces from 1999 to 2014. The results indicate that energy mix, industrialization index, and final
consumption rate have positive effects on CEI. As CEI increases, the effect of energy mix increases gradually,
whereas the effect of industrialization index tends to decrease, and the effect of final consumption rate increases
initially and then decreases. Technical progress and urbanization are both effective in reducing CEI. With CEI
increasing, the negative effect of technical progress presents a trend of decrease, then increase. Conversely, the
negative effect of urbanization is through the process of increase, then decrease.

1. Introduction

The rapid economic development has led to overwhelming energy
consumption and unprecedented rise in greenhouse gas (GHG) emis-
sions due to human activities, so the environmental problem has be-
come increasingly prominent which can hardly be neglected. While CO2

emissions account for the most of GHG caused by anthropogenic ac-
tivities (Fernando and Lin Hor, 2017), global carbon emissions are
expected to increase by 30% above the 2010 level by 2030 (Liu et al.,
2017), and China has exceeded the United States in carbon emissions
and became the world’s largest carbon emitter in 2007 (Dong et al.,
2013a). China has made a lot of efforts to reduce carbon emissions and
committed to reduce its CEI by 40%–45% by 2020 from the 2005 level
(Dong et al., 2013b; Yang et al., 2016; Qi et al., 2017). Furthermore, the
Chinese government aimed to peak CO2 emissions no later than 2030
(Guo et al., 2017; Dong et al., 2017) and increase the proportion of non-
fossil fuels in primary energy consumption to 20% by 2030 (Den Elzen
et al., 2016). Moreover, China proposed to cut CEI by 60%–65% by
2030 compared to the 2005 level (Chen et al., 2017). In the 13th Five-
Year Plan (2016–2020), China formulated the mitigation targets of

reducing aggregate energy intensity and aggregate CEI by 15% and
18%, respectively (NDRC, 2016). Therefore, it has been an urgent
problem to be solved in how to effectively mitigate CEI in China. Many
scholars have studied the feasibility of the said goals. For example, Yi
et al. (2016) and Xiao et al. (2016) perform the scenario analysis to
suggest that China is very likely to achieve CEI reduction goal by 2020.
Yuan et al. (2014) propose that a 17% clean energy target can meet the
target of 40–45% reduction in CEI by 2020. Zhang et al. (2017) employ
the dynamic Monte Carlo simulation and scenario analysis to indicate
that China can meet the 2020 and 2030 CEI reduction targets under the
existing policy, while it is uncertain whether China can reach its peak
CO2 emissions level by 2030. One important issue underlying these
mitigation targets is whether China can promote collaborative carbon
reduction and economic growth. This requires scrupulous and com-
prehensive study on the mechanism of China’s regional carbon emis-
sions.

Compared to aggregate carbon emissions and per capita carbon
emissions, CO2 emissions per unit GDP (i.e. CEI) is a better indicator
which better reflects the energy and economic performance of a
country, what’s more, it is an important indicator of China’s
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international commitment in reducing emissions. There are some dis-
putes about applying CEI to represent decarbonization efforts in an
economy. For instance, Cansino et al. (2015) indicate that the 2020
intensity reduction target in China can be easily achieved without ad-
ditional active migration policies by using a combined input–output
method and the World Input–Output Database. We acknowledge the
fact that total carbon emission reduction target can better present the
efforts of carbon mitigation in an economy. However, as we have
mentioned above, economic development and emissions reduction are
both of great importance in China against the background of the new
normal and sustainable development. The abatement target of CEI
means reducing CO2 emissions without damaging economic growth.
Moreover, given the implement of international carbon tax, a country
with lower CEI has larger product competitiveness. At present, the ex-
isting studies on CEI mainly adopt econometric analysis and decom-
position analysis methods. Econometric methods have been widely used
in CEI research. Dong et al. (2016) adopt a combination of static spatial
econometrics and dynamic panel co-integration methods to study the
effects of urbanization and energy mix on CEI in China, and find that
urbanization and energy mix have positive impacts on CEI. Li et al.
(2017) employ Moran’s I index and dynamic evolution model to study
China’s CEI in construction sector from the space and time dimensions,
respectively. Similarly, using the spatial panel econometric model,
Cheng et al. (2014) analyze the influencing factors and spatiotemporal
dynamics of CEI in China, and the results specify that energy intensity,
energy mix, industrial structure and urbanization are the main driving
forces of CEI. Wang et al. (2016b) employ OLS regression to investigate
what influences CEI at national and regional levels. Zhu et al. (2014)
utilize cross-sectional data econometric analysis to analyze the influ-
encing factors of CEI change differences among 89 countries during
1980–2008. Threshold regression model is applied to study the de-
terminants of CEI as well (Pan et al., 2016; Li and Lin, 2016). However,
it should be noted that the econometric approaches documented in the
literature are based on the hypothesis of conditional-mean function.
Thus, it is difficult to obtain the information of the tail distribution
(non-central position) of dependent variable. Moreover, it is assumed
that the effect of individual independent variable on CEI is homo-
geneous and does not differ throughout the conditional distribution of
CEI, which is not consistent with the reality. When it comes to de-
composition analysis, the most widely used method is the index de-
composition analysis (IDA). IDA was first employed to investigate the
effect of change in product structure on industrial energy demand on
the background of oil crisis in the 1970s. Since then, IDA has been
increasingly applied to deal with energy-related environmental issues
(Ang and Zhang, 2000; Ang et al., 2016). The Laspeyres index (Sun and
Malaska, 1998; Ebohon and Ikeme, 2006) and the Divisia index
methods are popular in CEI research. For instance, Shrestha and
Timilsina (1996) utilize Arithmetric Mean Divisia Index (AMDI) de-
composition method to decompose CEI in 12 Asian countries during
1980–1999, and find that energy intensity is the main determining
factor of CEI. The Adaptive Weighting Divisia Index (AWDI) decom-
position method proposed by Liu et al. (1992) is increasingly adopted in
CEI studies (Greening et al., 1998, 1999, 2001; Greening, 2004;
Schipper et al., 2001; Fan et al., 2007). These studies all suggest that
energy intensity is the dominant factor resulting in the reduction of CEI.
In addition, Logarithmic Mean Divisia Index(LMDI)method, an im-
portant branch of IDA method, has been widely employed in the lit-
erature about CEI in recent years (Chen, 2011; Tan et al., 2011;
Gonzalez and Martinez, 2012; Liu et al., 2015; Cruz and Dias, 2016;
Zhang et al., 2016; Wang et al., 2016a; Xu et al., 2017a). Ang and Wang
(2015) conclude LMDI-I is excepted to be a preferred Divisia decom-
position method in multidimensional and multilevel analysis compared
to LMDI-II and AMDI. We can conclude two characteristics from these
studies using LMDI method: first, the driving factors decomposed from
CEI mainly include the energy intensity effect, energy mix effect, in-
dustrial structure effect, and emission coefficient effect; second, the

analysis is further conducted to explore the contributions of these
driving factors to the change in CEI from the perspectives of total
economy and economic sectors.

Since IDA method has lower requirement of data and can easily
conduct spatial and temporal comparison analysis, it has been more
widely applied to examine CEI in comparison to other decomposition
methods. However, IDA only considers direct energy-related carbon
emissions dismissing the fact that energy is utilized repeatedly in
practice, thus, carbon emissions can come from direct and indirect
energy consumption. Therefore, the application of IDA analysis will
lead to the loss of considerable information, while input-output struc-
tural decomposition analysis (I-O SDA) method can effectively solve
this problem. Input-output model method is an economic quantitative
analysis method, which is first introduced by Leontief (1970). Recently,
input-output method has been widely applied in resource environment
field. As an important application of input-output method, SDA is first
proposed by Syrquin (1976) at European econometric conference. Its
core idea is to decompose the change of dependent variable in eco-
nomic system into the variation of various independent variables and
calculate the contribution of each independent variable to the change of
dependent variable. Since I-O SDA is presented, it has been gradually
applied in research on energy consumption and economic structure
(Rose and Casler, 1996), as well as energy and emissions (Su and Ang,
2012a,b). Many scholars adopt I-O SDA method to study the driving
forces of carbon emissions. For example, Common and Salma (1992)
analyze carbon emissions in Australia using I-O SDA method, and de-
compose total carbon emissions into three factors: the final demand
effect, energy structure effect and technology effect. Casler and Rose
(1998) improve I-O SDA method and analyze the source of American
carbon emissions, finding that the substitution effect of energy is the
primary reason for carbon emissions reduction. Recently, an increasing
number of studies investigate China’s carbon emissions issue through I-
O SDA, e.g., the study on the effects of technology, economic structure,
urbanization, and life style on China’s carbon emissions (Peters et al.,
2007), and the decomposition analysis about carbon emissions in Xin-
jiang and Jiangsu provinces (Wang and Wang, 2015; Xu et al., 2017b).
As described above, most studies adopt SDA method to decompose total
carbon emissions, while literature about CEI decomposition is relatively
rare. Study on CEI is more useful and meaningful in supporting policy
making in China, as CEI reflects the relationship between carbon
emissions and economy. Compared to IDA, I-O SDA can be employed to
explore direct and indirect effects, especially the indirect effect of de-
mand change in one sector on other sectors (Hoekstra and van den
Bergh, 2003). IDA and SDA differ in methodological foundation, and
they all decompose an aggregate/intensity indicator into effects asso-
ciated with several predefined factors (Wang et al., 2017a). An ad-
vantage of SDA over IDA is that SDA can analyze demand-said effects
and the impact of trade (Wang et al., 2017b). Most IDA studies suggest
energy intensity is the main reason for the reduction in CEI/carbon
emissions, such as AMDI (Shrestha and Timilsina, 1996), AWDI (Fan
et al., 2007), LMDI (Zhang et al., 2016), while in SDA studies the main
factor may be energy intensity (Xu et al., 2017b), per capita GDP (Wang
and Wang, 2015), input mix (Zhang, 2009) or the substitution effect of
energy (Casler and Rose, 1998). Wang et al. (2017a) provide an up-to-
date review of IDA and SDA studies with respect to energy and emis-
sions analysis, and compare the application of two techniques. In ad-
dition, a study by Wang et al. (2018) presents a comprehensive com-
parison among IDA, SDA and PDA. About the sub-aggregate SDA
studies, Wang et al. (2017b) and Wang et al. (2017c) employ multi-
plicative decomposition to investigate the changes in CEI at national
and sectoral levels, respectively. In SDA studies, multiplicative de-
composition form is rarely used because of the complexity in result
interpretation at the sectoral level (Su and Ang, 2015). Moreover,
conventional multiplicative SDA can only compute results at the ag-
gregate level (Wang et al., 2017c). Since multiplicative SDA at the sub-
aggregate level is not well developed, we perform additive

F. Dong et al. Resources, Conservation & Recycling 129 (2018) 187–201

188



Download English Version:

https://daneshyari.com/en/article/7494522

Download Persian Version:

https://daneshyari.com/article/7494522

Daneshyari.com

https://daneshyari.com/en/article/7494522
https://daneshyari.com/article/7494522
https://daneshyari.com

