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a b s t r a c t 

In this note we discuss (Gaussian) intrinsic conditional autoregressive (CAR) models for 

disconnected graphs, with the aim of providing practical guidelines for how these mod- 

els should be defined, scaled and implemented. We show how these suggestions can be 

implemented in two examples, on disease mapping. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Conditional Autoregressive (CAR) models are widely 

used to represent local dependency between random vari- 

ables, with numerous applications in spatial statistics, dis- 

ease mapping ( Lawson, 2013; Wakefield, 2007 ) and imag- 

ing ( Besag et al., 1991 ). This paper discusses CAR models 

for disconnected graphs and provides specific recommen- 

dations in order to implement them in practice. Through 

this note, we will illustrates the proposed methods using a 

classic example on disease mapping, leaving the straight- 

forward generalisation to the reader. 

Disease mapping concerns the study of disease risk over 

a map of geographical regions. Let assume a study area 

partitioned in n non overlapping regions, indexed by i = 

1 , . . . , n, with y i the number of cases observed for a given 

disease in region i . If the disease is rare, y i can be as- 
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sumed as Poisson distributed with mean θi = E i r i , where E i 
is the expected number of cases (computed on the basis of 

the demographic characteristics of a reference population) 

and r i is the relative risk associated with living in region i ; 

r i = 1 means no augmented risk with respect to the aver- 

age in the whole study area, r i > 1 ( r i < 1) indicates higher 

(lower) risk than average. 

As an example, in ecological regression studies inves- 

tigating the relationship between pollution, say z , and 

health, the risks might be modelled as 

log (r i ) = α + βz i + x i 

where α is the log baseline risk and β is the effect of pol- 

lution. The term x i is a random effect capturing residual 

extra variability in i , possibly due to unobserved risk fac- 

tors. Some of these unobserved may vary smoothly over 

space, inducing spatial structure in the residuals x i ’s. This 

structure can be modelled using a CAR prior. 

The definition of a CAR model starts by specifying a 

graph. The graph consists of a collection of nodes and 

edges representing, respectively, regions and neighbouring 

relationships between them. The number of nodes deter- 
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mines the size of the graph. For the sake of a general defi- 

nition, in this paper a graph is seen as a collection of nodes 

belonging to one or more connected components . 

Within a connected component, each node is connected 

to at least another node through a path (i.e. a set of con- 

tiguous edges). Therefore, we say a graph is connected if 

it consists of one connected component of size larger than 

one (e.g. a ‘mainland’ component). A graph is disconnected 

if it is not connected, meaning that it consists of more 

than one connected component of any size (e.g. a ‘main- 

land’ component of size n plus an ‘island’ component of 

size 1). 

Within a connected graph, specification of neighbouring 

relationships is clear, as each node has at least one neigh- 

bour. In this case, the definition of a CAR model follows 

straightforwardly from specification of the full conditionals 

( Besag et al., 1991 ) 

x i | x −i , κ ∼ N 

( ∑ 

j: i ∼ j 

x j /n i , (n i κ) −1 

) 

, i = 1 , . . . , n. (1) 

where x −i = { x k , k � = i } , i ∼ j means i and j are neighbour- 

ing nodes and n i is the number of neighbours of i . The 

precision parameter κ regulates the degree to which x i is 

shrunk to the local mean �j : i ∼ j x j / n i . Note that the vari- 

ance V ar(x i | x −i ) is inversely proportional to the number of 

neighbours n i . Therefore, both the prior assigned to κ and 

the structure of the graph play a role in determining the 

shrinkage properties of the CAR prior. 

The graph structure is essentially defined through con- 

ditional independence assumptions between the nodes. In 

particular, prior (1) specifies that the x i ’s are condition- 

ally independent given the information in neighbourhood 

x j , i ∼ j . These assumptions are reflected in the precision 

structure of the joint distribution for x = (x 1 , . . . , x n ) 
T , de- 

rived from the full conditionals in (1) , 

π(x | κ) = 

(
κ

2 π

)(n −1) / 2 

| R| 1 / 2 ∗ exp 

( 

−κ

2 

∑ 

i ∼ j 

(x i − x j ) 
2 

) 

, 

(2) 

where the summation is over the set of all pairs of neigh- 

bours, i ∼ j , and | · | ∗ represents the generalised determi- 

nant, calculated as the product of the non zero eigenval- 

ues. Model (2) is a multivariate Gaussian with zero mean 

and n x n precision Q = κR, where R is a matrix represent- 

ing the neighbourhood structure of the model: 

R i j = 

⎧ ⎨ 

⎩ 

n i i = j 

−1 i ∼ j 

0 otherwise , 

(3) 

The conditional independence assumptions between 

the nodes can be checked immediately looking inside R : if 

R i j = 0 then x i and x j are conditionally independent, given 

all the other variables { x k : k � = i, k � = j } ( Rue and Held, 2005 ). 

The structure matrix in (3) has rank equal to n − 1 , thus 

density (2) is improper. As a consequence of this, the over- 

all mean is unspecified in Eq. (2) and can be identified only 

when adding a linear constraint, such as 
∑ 

i x i = 0 . For this 

reason, this type of prior is referred to as intrinsic CAR. 

The purpose of using an intrinsic CAR prior is to borrow 

strength of information between neighbours, in the disease 

mapping example this yields a smoothed map for the risk. 

In some applications the graph might be disconnected. 

A typical example is a graph made of two connected com- 

ponents, one of size larger than 1 (e.g. mainland) and the 

other of size 1 (e.g. island; components of size 1 will be 

denoted as singletons hereafter). In this case, a direct ap- 

plication of the intrinsic CAR (2) implies that n i = 0 , if i 

is a singletons. This yields a constant prior for x i , i.e. the 

singleton random effect is, at prior, allowed infinite vari- 

ance. This poses a general issue about interpretation of the 

prior for κ , that may be different in the various connected 

components of the graph. These issues will be discussed 

in details in Section 3 , were we will introduce the general 

case of a disconnected graph, with several connected com- 

ponents of any size. 

Motivated by the issues involved in a direct applica- 

tion of (2) to a disconnected graph, we propose a solution 

based on rescaling the precision matrix Q to have similar 

shrinkage properties, at prior, in each connected compo- 

nent. The rescaling procedure is drawn by ideas in Sørbye 

and Rue (2014) . With our new definition the effect of the 

graph on the shrinkage properties (defined by the prior for 

κ) is marginalized out. Therefore, κ has a clear interpre- 

tation as a smoothing parameter, regulating the degree to 

which x i will shrink to a local mean, if i has neighbours, 

and to a global mean, if i has no neighbour. In literature 

there is a lack of attention ( Knorr-Held, 2002 ) on the defi- 

nition and/or proprieties of a CAR for disconnected graphs, 

the only reference on this topic is Hodges et al. (2003) who 

discuss the form of the normalizing constant in (2) . On the 

practical side, the GeoBUGS manual ( Spiegelhalter et al., 

2002 ) offers some guidelines in the case of a graph con- 

taining singletons, with a default option which is to set x i 
to zero, if i is a singleton. Note that this is equivalent to 

enforcing a sum-to-zero constraint (x i = 0) on each single- 

ton random effect. 

An alternative approach is to correct the graph, i.e. to 

remove the singletons by connecting islands to mainland. 

In our opinion neither of these strategies address the is- 

sue in a satisfactory way: the first one adds new con- 

straints, the second one essentially corrupts the graph. We 

would like to stress that the definition of the graph is part 

of the modelling process, therefore editing new edges be- 

tween islands and mainland is only appropriate in cases 

where borrowing strength of information between them is 

needed. Changing the graph is inappropriate every time 

the application at hand requires the original graph, i.e. 

when borrowing strength of information between islands 

and mainland is not a sensible choice. 

The rest of the paper is organized as follows. 

Section 2 introduces formally the concept of an intrinsic 

CAR model defined with respect to a graph. In Section 3 , 

we revise scaling of the precision matrix of an intrinsic 

CAR model defined with respect to a connected graph, fol- 

lowing Sørbye and Rue (2014) . In Section 4 we discuss 

the issues caused by direct application of (2) in the case 

of a disconnected graph. We then outline recommenda- 

tions on how the model should be scaled in this case. 

Section 5 deals with linear constraints and computation 
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