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a b s t r a c t 

Approximate Bayesia n Computation (ABC) provides an attractive approach to estima- 

tion in complex Bayesian inferential problems for which evaluation of the kernel of the 

posterior distribution is impossible or computationally expensive. These highly paralleliz- 

able techniques have been successfully applied to many fields, particularly in cases where 

more traditional approaches such as Markov chain Monte Carlo (MCMC) are impractical. In 

this work, we demonstrate the application of approximate Bayesian inference to spatially 

heterogeneous Susceptible-Exposed-Infectious-Removed (SEIR) stochastic epidemic models. 

These models have a tractable posterior distribution, however MCMC techniques never- 

theless become computationally infeasible for moderately sized problems. We discuss the 

practical implementation of these techniques via the open source ABSEIR package for R. 

The performance of ABC relative to traditional MCMC methods in a small problem is ex- 

plored under simulation, as well as in the spatially heterogeneous context of the 2014 

epidemic of Chikungunya in the Americas. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The study of epidemics is complicated by the fact that 

real human populations exhibit complex structure and in- 

teract in subtle ways over both space and time. Never- 

theless, in an increasingly globalized world, the ability to 

model pathogen outbreaks, predict ongoing spread, and 

evaluate interventions represents crucial abilities of pub- 

lic health practitioners. In this work, we present a class of 

algorithms and statistical framework ideally suited to meet 

this need, in addition to a discussion of our open source 

software, ABSEIR, which implements them. 
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1.1. Approximate Bayesian computation 

Approximate Bayesian Computing is generally at- 

tributed to the work of Rubin (1980) , which concerns 

interpretation and implementation of practical modeling 

techniques for applied Bayesian statisticians. Among other 

contributions, this work introduced one of the most com- 

monly used algorithmic approaches to ABC: the rejection 

algorithm. This procedure provides an intuitive introduc- 

tion to approximate Bayesian computing techniques. We 

therefore begin our approach to the subject by introducing 

the requisite notation, and describing the basic ABC rejec- 

tion algorithm. 

Define a p × 1 parameter vector θ with p dimensional 

parameter space � and prior distribution π�( θ). Further 

define an N × 1 vector of observed data, y , with a likeli- 

hood or data generating distribution denoted by f Y (y | θ) . 

Finally, define a distance function (such as the Euclidean 
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distance) between appropriately sized vectors x and y : 

ρ(y , x ) . As a Bayesian sampling technique, the goal of 

ABC is to make inference about the posterior distribution, 

f �( θ| Y ) ∝ f Y (y | θ) π�( θ) . 

The general pattern of rejection sampling ABC is quite 

simple. We first generate repeated samples θi from the 

prior distribution for θ. Each of these samples, indexed by 

i , is in turn used to generate a replicate data set x i from 

the likelihood. Parameters that generate replicate data sets 

that are sufficiently ‘close’ to the observed data y , accord- 

ing to the distance function ρ and a tolerance ε, are re- 

tained, while the rest are discarded. Details of this proce- 

dure are given in Algorithm 1 . 

Algorithm 1 ABC rejection algorithm. 

Require: Define a tolerance ε > 0 , and let ‘ ← ’ denote as- 

signment 

1: for i ← 1 to n do 

2: d ← ∞ 

3: while d > ε do 

4: draw θi ∼ π( �) 

5: draw x i ∼ f Y (y | θ) i 
6: d ← ρ(y , x i ) 

Note that this approach does not require the user to 

evaluate the potentially expensive or unavailable likelihood 

function, but does require the ability to draw samples from 

it ( Beaumont, 2010; Rubin, 1980 ). In its original formula- 

tion, the tolerance, ε, was taken to be zero ( Rubin, 1980 ). 

The key insight of the rejection approach is clear in this 

context: accepting only parameters that produce replicate 

data identical to the observed response is equivalent to 

conditioning on that observed data. The distribution of pa- 

rameter values conditional on the observed data is the pos- 

terior distribution: our inferential target. The most com- 

monly applied version of the algorithm, however, generally 

includes the aforementioned nonzero tolerance, and em- 

ploys a distance measure which depends only on a set of 

summary statistics of x and y , thus rendering the inference 

‘approximate’. 

1.2. Sequential algorithms 

Numerous improvements and extensions have been 

proposed to this basic algorithm, generally focusing on ob- 

taining increased sampling efficiency. In particular, many 

authors note that sampling performance can be extremely 

poor in situations where prior distributions on the pa- 

rameter vector θ are diffuse with respect to the pos- 

terior distribution, especially for high dimensional prob- 

lems ( Beaumont, 2010; Beaumont et al., 2009; Blum and 

François, 2010; Del Moral et al., 2012; Neal and Huang, 

2015; Sisson et al., 2007 ). Sun et al. (2015) apply several 

such improvements in the context of non-spatial determin- 

istic and stochastic compartmental epidemic models. Here, 

we emphasize a single algorithm, though the software de- 

scribed in later sections is the focus of ongoing research in 

this area. We implement a slightly modified version of the 

sequential Monte Carlo algorithm proposed by Beaumont 

et al. (2009) , which we find both intuitive and effective. As 

with the rejection algorithm, Beaumont et al. (2009) be- 

gin by drawing proposed parameters from their prior 

distribution. Instead of repeating this step, however, sub- 

sequent sets of parameters are re-sampled and then 

perturbed from previously accepted values according to a 

set of weights. Data is then simulated as before, and pa- 

rameters are accepted according to a decreasing sequence 

of ε values. Weights are updated using an importance sam- 

pling step to preserve the target posterior distribution. This 

approach can provide dramatic efficiency gains over the re- 

jection algorithm. 

Our adaptation of this algorithm introduces four pri- 

mary modifications. First, we employ a batch size, N ≥ n , 

over which simulations and distance evaluations may be 

conducted in parallel with no need for communication be- 

tween nodes. This is important, because even with the se- 

quential parameter updates, acceptances can become quite 

rare as ε decreases. Second, we permit the first iteration 

to employ a larger batch size than subsequent sequential 

step. This ensures that the algorithm starts at a practical ε, 

rather than spending too much time at unnecessarily per- 

missive tolerances. Third, we implement a specific ε sched- 

ule: εt+1 = cεt , where 0 < c ≤ 1. This obviates the need for 

investigators to manually specify a sequence of ε values, a 

process that depends on the scale of observed values as 

well as the chosen set of prior distributions. Finally, we 

generalize the perturbation kernel to permit a multivariate 

Gaussian distribution. For problems that exhibit correlation 

among the parameters, we have found the multivariate ap- 

proach can be more efficient. 

These modifications imply two potential modes of 

convergence, beyond specifying a required terminating ε
value. First, the investigator may specify a desired number 

of sampling epochs. Second, users may choose to specify a 

maximum number of batches of size N which will execute 

for a particular value of ε before the sampler will simply 

return the current sample of n parameter values. This lat- 

ter mode enables the algorithm to adapt the termination 

of the sequence of ε values to the difficulty of sampling by 

specifying a termination acceptance rate. This acceptance 

rate is generally chosen based on the computational re- 

sources available. Background on the development of se- 

quential Monte Carlo ABC is available in Beaumont (2010) . 

1.3. Model selection in SMC-ABC 

Beyond the ability to fit models that would be other- 

wise computationally infeasible, ABC techniques provide a 

natural way to compare the relative evidence for differ- 

ent models. Informally, sets of parameters and models that 

produce better simulated data are more probable than oth- 

ers. This can be used to compare a set of candidate mod- 

els, and in fact the ratio of acceptance rates between two 

models is an estimate of the Bayes Factor comparing the 

two ( Beaumont, 2010 ). 

In the SMC-ABC context, however, such comparisons 

are a bit more problematic. Care must be taken to em- 

ploy comparable instantiations of the algorithm. For ex- 

ample, comparison between non-converged and converged 
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