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a b s t r a c t 

Spatial cluster detection is an important tool in many areas such as sociology, botany and 

public health. Previous work has mostly taken either a hypothesis testing framework or 

a Bayesian framework. In this paper, we propose a few approaches under a frequentist 

variable selection framework for spatial cluster detection. The forward stepwise methods 

search for multiple clusters by iteratively adding currently most likely cluster while ad- 

justing for the effects of previously identified clusters. The stagewise methods also consist 

of a series of steps, but with a tiny step size in each iteration. We study the features and 

performances of our proposed methods using simulations on idealized grids or real geo- 

graphic areas. From the simulations, we compare the performance of the proposed meth- 

ods in terms of estimation accuracy and power. These methods are applied to the the 

well-known New York leukemia data as well as Indiana poverty data. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Spatial cluster detection is a fundamental and challeng- 

ing problem in spatial epidemiology. The term ‘clustering’ 

is a vaguely defined concept in the medical literature. A 

broad definition of clustering is the spatial aggregation of 

disease events. As the observed spatial pattern may sim- 

ply be a function of distribution of the population at risk 

or of some other risk factors, Wakefield et al. (20 0 0) pro- 

posed a more robust definition, which describes cluster- 

ing as residual spatial variation in risk after accounting for 

known influences. The main goal of disease clustering is to 

evaluate whether a disease is randomly distributed or has 

a tendency to cluster over time or space after adjusting for 
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known confounding factors. The identification of clusters 

may provide clues when studying the etiology of a disease, 

or when conducting disease surveillance programmes. On 

the one hand, false identification of a cluster may lead to 

wasted resources, but on the other hand, failing to detect 

a genuine disease cluster may cause serious consequences. 

For instance, underestimation of spatial extent and severity 

of an infectious disease may discourage necessary public 

concern and lead to wider spread of disease. 

Spatial cluster detection problems have been typically 

approached under a frequentist hypothesis testing frame- 

work. The spatial scan statistic method ( Kulldorff, 1997; 

Kulldorff and Nagarwalla, 1995 ) and its many variants 

( Kulldorff et al., 2006; Shu et al., 2012; Tango and Taka- 

hashi, 2005 ) are based on the simultaneous evaluation, via 

Monte Carlo hypothesis testing, of the statistical signifi- 

cance of the maximum likelihood ratio test statistic across 

a large collection of potential clusters. The scan statistic 

approach is typically based on the comparison of a no 
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clustering null hypothesis against a single cluster alterna- 

tive. Development of scan statistics has focused on assess- 

ment of the no cluster null hypothesis against the single 

cluster alternative with ad hoc assessments of secondary 

clusters. Some recent methods more rigorously account 

for multiple clusters in the detection process. Zhang et al. 

(2010) propose assessing secondary clusters after sequen- 

tial deletion of observed data inside the previously de- 

tected clusters, essentially a variant of more traditional for- 

ward stepwise variable selection. Li et al. (2011) propose a 

modified scan statistic that evaluates the most likely two 

(or more) clusters rather than the single most likely clus- 

ter. Beyond the requirement of pre-specifying the number 

of clusters to be evaluated, this approach also greatly in- 

creases the size of the search space and hence the compu- 

tational burden. 

As an alternative, a number of authors Gangnon and 

Clayton (20 0 0 , 20 03 , 20 07) , Clark and Lawson (2002) , Yan 

and Clayton (2006) , and Wakefield and Kim (2013) have 

developed Bayesian models for cluster detection. All of 

these methods utilize essentially the same Poisson or bino- 

mial likelihood function, which incorporates explicit clus- 

ters with distinctive, either elevated or lowered, risks. All 

of these methods require prior specifications for the num- 

ber of clusters and for the risk parameters associated 

with the background and the clusters. The major substan- 

tive differences between these methods are differences in 

prior specifications for these parameters, which also lead 

to differences in computation. Here, we consider penal- 

ized likelihood approaches based on forward stepwise and 

forward stagewise ( Hastie et al., 2007, 2001 ) algorithms, 

which do not require prior specifications for these param- 

eters, as an alternative approach to inference for multiple 

clusters. 

In this paper, we develop two alternative approaches 

to detection of multiple clusters. First, we consider two 

novel approaches based on traditional forward stepwise 

selection. In contrast with Zhang et al. (2010) , we retain 

all observations in the original dataset and instead absorb 

the effects of previously detected clusters into the offset 

term for the binomial or Poisson model. In addition to 

sequential hypothesis tests, we consider penalized likeli- 

hood approaches using either bootstrap bias corrections or 

traditional information criteria. Second, we recognize spa- 

tial cluster detection as a special case of high-dimensional 

variable selection in generalized linear models and pro- 

pose the use of incremental forward stagewise regression 

( Hastie et al., 2007 ), a variation of the LASSO. We eval- 

uate a number of different optimality criteria, including 

bootstrap-based bias corrections and traditional informa- 

tion criteria, to select a single model from the solution 

path. 

The paper is organized as follows. In Section 2 , we 

describe the spatial cluster models for Poisson and bino- 

mial data. In Section 3 , we propose a stepwise method 

based on sequential permutation test, a modified stepwise 

method based on penalized likelihood, as well as a for- 

ward stagewise procedure. In Section 4 , we conduct simu- 

lation studies. In Section 5 , we present analysis of the New 

York leukemia data set and the Indiana Poverty data set. In 

Section 6 , we present some concluding remarks. 

2. Statistical models 

The spatial data in disease clustering studies usually fall 

into two categories: point location (case-control) data and 

aggregated (cell count) data. Point location data contains 

the exact location of each study subject. In spatial epi- 

demiology, the process of aggregation involves summing 

up counts of disease events within a defined area (or cell) 

to yield the total number of disease cases in each area. 

For confidentiality reasons, a majority of disease clustering 

studies use cell count data. With cell count data, an en- 

tire study region is divided into N cells. For each cell i , we 

observe y i , the number of cases, z i = (z 1 i , z 2 i ) , the vector of 

co-ordinates of the geographic centroid, and n i , the popula- 

tion at risk in cell i . We consider two probabilistic models 

for count data: a Poisson model and a binomial model. 

2.1. Binomial model 

Typically, the underlying statistical model assumes that 

the observed number of cases y i , i = 1 , 2 , . . . , N, are inde- 

pendently and identically distributed as 

y i ∼ binomial (n i , p i ) , (1) 

where the unknown parameter p i is the probability of the 

events for cell i and is modeled as 

logit (p i ) = logit (p i 0 ) + α + 

m ∑ 

j=1 

θ j 1 { d( z i , c j ) ≤r j } . (2) 

The non-spatial effect components include the intercept α
and logit( p i 0 ), where p i 0 is the baseline probability and can 

be estimated by a logistic regression model with some pre- 

dictor variables such as demographic variables (race, eth- 

nicity, gender, age, and etc.), or other non-spatial effect 

factors. The spatial clustering component of the model is ∑ m 

j=1 θ j 1 { d( z i , c j ) ≤r j } , where p is the number of potential 

clusters, c j , r j are the center and radius of potential cir- 

cular cluster j (in metric d ) associated with log odds ratio 

θ j , j = 1 , 2 , . . . , p, and 1 {·} is the indicator function. 

2.2. Poisson model 

For a rare disease, we can approximate y i , i = 1 , 2 , . . . , N

by the Poisson distribution 

y i ∼ Poisson (ρi E i ) , (3) 

where the parameter ρ i is the relative risk for cell i and E i 
is the expected number of cases in cell i (based on inter- 

nal or external standardization). When a confounding vari- 

able is of concern, let n il be the population at risk in cell 

i with covariate value l and λl be the disease rate for peo- 

ple with covariate value l , the standardized expected num- 

ber of cases in cell i is calculated as E i = 

∑ 

l λl n il , where 

λl can be estimated internally or externally. A log-linear 

model for the relative risk ρ i is modeled as 

log (ρi ) = α + 

m ∑ 

j=1 

θ j 1 { d( z i , c j ) ≤r j } , (4) 

where α is the background component which is related to 

the overall rate across the study area and is well-identified 
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