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a b s t r a c t

Often, when modeling infectious disease spread, the complex network through which the
disease propagates is approximated by simplified spatial information. Here, we simulate
epidemic spread through various contact networks and fit spatial-based models in a Bayes-
ian framework using Markov chain Monte Carlo methods. These spatial models are individ-
ual-level models which account for the spatio-temporal dynamics of infectious disease. The
focus here is on choosing a spatial model which best predicts the true probabilities of infec-
tion, as well as determining under which conditions such spatial models fail. Spatial mod-
els tend to predict infection probability reasonably well when disease spread is propagated
through contact networks in which contacts are only within a certain distance of each
other. If contacts exist over long distances, the spatial models tend to perform worse when
compared to the network model.

Crown Copyright � 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Having the ability to produce accurate mathematical
models of infectious disease spread can help provide
researchers and government officials with the knowledge
needed for making policy decisions directed toward con-
tainment of disease spread. Quick and accurate disease
models may answer critical questions that can potentially
save lives and protect economies. For example, severe
acute respiratory syndrome (SARS) in 2003 had a drastic
affect on tourism, food and travel, costing China 8.5 and
Canada 4.3 billion US dollars (Beutels et al., 2009). Another
example is given by Meltzer et al. (1999) who estimated
the economic impact of a future influenza pandemic in
the United States at 71.3 to 166.5 billion US dollars.

Generally, infectious diseases propagate via complex
individual-level interactions, or contacts, between infected
and susceptible individuals in the population. Combining
all individual contact information into a contact network
enables researchers to analyze disease spread through
the population. There is a substantial amount of literature
on network based epidemiology in diseases such as foot-
and-mouth disease and avian influenza, e.g. (Cauchemez
et al., 2011; Dubé, 2009; Jewell et al., 2009; Marchbanks
et al., 2011; Streftaris and Gibson, 2004; Zhen et al., 2011).

However, network data that we may wish to use to
model the spread of various diseases is often difficult to
obtain. Collection of such data is expensive and there are
issues regarding recall and privacy encroachment. A con-
nection, or a contact between two individuals, is usually
deemed to be any contact between individuals by which
the disease can spread from an infected individual to a sus-
ceptible individual. The connections themselves can be
hard to describe, as researchers must quantify the type of
relationship or contact needed for infection to transfer
(Keeling and Eames, 2005). The networks may be social
in nature, spatial proximity based, or demographic (Kol-
aczyk et al., 2009). For example, a network may be defined
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by sexual activity between two individuals in the case of a
sexually transmitted disease. Alternatively, if trying to
model the spread of the Norwalk virus in people, we might
use knowledge about which individuals live together in the
same house, attend the same schools, or work together, etc.
If modeling a livestock disease at the level of individual
farms, say, we may want data on the trade networks, sup-
ply networks, and even social networks of farmers and
farm workers.

Due to the complexity of, and difficulties in obtaining
accurate information about, such networks, simplifications
are sometimes made in the model being used. For example,
we may use a spatial network, rather than a more desirable
trade network. Examples of such spatial simplification can
be found in a number of models of the UK 2001 foot-and-
mouth disease epidemic (Chis Ster and Ferguson, 2007;
Chis Ster et al., 2009; Deardon et al., 2010; Keeling et al.,
2001). Plant epidemiologists often make such simplifica-
tions as their subjects are generally stationary thus allow-
ing infective pressures to decrease exponentially with
distance (exponential decay), with a power of distance
(geometric decay) or with a nearest neighbor effect (Beu-
tels et al., 2009; Filipe and Maule, 2004). A piecewise func-
tion, similar in concept to the nearest neighbor effect only
with a given probability of infection from a long distance
source, has also been used in modeling wildlife infectious
diseases in which a physical barrier (such as a river) re-
duces mixing within the population (Smith et al., 2005).
The simplest assumption to make for any infectious dis-
ease model is to assume homogeneous mixing within the
population thereby, with no other covariate information,
assuming equal infective pressure on all individuals within
the population. Bansal et al., 2007 provides insight into the
ability of homogeneous-mixing compartmental model’s
ability to predict the characteristics of network-based
epidemics.

Deardon et al., 2010 define a class of individual-level
models (ILMs) that can be used to model the spread of dis-
ease when its spread depends on various individual-level
risk factors. Spatio-temporal aspects of the infectious dis-
ease can easily be incorporated into such ILMs, enabling
researchers to incorporate spatial proximity to infectious
individuals in the model. Similarly, network information
can be included in such models. The statistical process of
fitting the model to observed data is one key aspect of ana-
lyzing epidemic data. ILMs, and similar models, can be fit
to data within a Bayesian statistical framework using Mar-
kov chain Monte Carlo (MCMC).

The purpose of this paper is to examine the effect of
using spatial information as a proxy to more complex net-
work information when fitting ILMs to epidemic data. Our
intention with this paper is to present generic insights into
the cost of using a spatial model when the underlying pop-
ulation is connected by a spatially-based network. This is
carried out via two simulation studies. These studies in-
volve simulating epidemics, propagated through networks
of varying complexity, and comparing the results obtained
when both network-based, and spatial-based, ILMs are fit
to the simulated data.

The paper is laid out as follows. The general ILM frame-
work and specific ILMs used in the paper will be outlined

in Section 2. Epidemic study and model assessment criteria
will also be discussed. Section 3 presents the results of the
simulation studies via the use of our chosen model assess-
ment criteria. Conclusions that are made from the results
as well as a list of possible future work will be given in
Section 4.

2. Methodology

2.1. General model framework

The general framework of individual-level models
(ILMs) for infectious disease is presented in Deardon
et al. (2010). Here, we briefly review this framework in
the context of a susceptible-infectious-removed (SIR) com-
partmental class of models.

In a discrete time SIR model each individual i can be in
one of three states at any time point: i 2 S implies that the
individual is susceptible to the disease; i 2 I implies that
the individual is infected and is infectious; i 2 R implies
that the individual is removed from the population and
no longer able to be infected or infect other individuals
(e.g. by recovering and gaining immunity to the disease
or dying). An individual i in one of these states at time t
is denoted to be in the set SðtÞ; IðtÞ, or RðtÞ, respectively.
The epidemic history comprises SðtÞ; IðtÞ;RðtÞ for
t ¼ 1; . . . ; tmax where, tmax is the time at which the last
infectious individual enters the removed state. Individuals
within the epidemic may only move from S! I and I! R.
Individuals are defined as discrete points in space and time
with the probability of a susceptible individual i becoming
infected with the disease at time t equal to

Pit ¼ 1� exp f�nðiÞ
X
j2IðtÞ

qðjÞjði; jÞg � eði; tÞ
" #

; ð1Þ

where nðiÞ is a function representing potential risk factors
associated with susceptible individual i contracting the
disease; qðjÞ is a function representing potential risk fac-
tors associated with infectious individual j transmitting
the disease; jði; jÞ is an infection kernel representing po-
tential risk factors involving both infected and susceptible
individuals j and i, respectively; eði; tÞ is a function that ac-
counts for some random behavior within the epidemic that
cannot be explained by the other terms in the model (e.g.
infection of a susceptible individual by an infectious indi-
vidual from outside the observed population). For the pur-
pose of this paper eði; tÞ is set to zero.

We define the epidemic history as fSðtÞ; IðtÞ;RðtÞgtmax
t¼0 .

Given the complete epidemic history the likelihood can
be computed as:

lðy j hÞ ¼
Ytmax

t¼1

Y
i2Iðtþ1ÞnIðtÞ

Pit

" # Y
i2Sðtþ1Þ

1� Pit

" #
; ð2Þ

where, y is the observed epidemic data; h is a vector of
parameters;

Iðt þ 1Þ n IðtÞ is the set of newly infected individuals at
time t þ 1; and Sðt þ 1Þ is the set of susceptible individuals
at time t þ 1.
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