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a b s t r a c t

Models for fitting spatio-temporal point processes should incorpo-
rate spatio-temporal inhomogeneity and allow for different types
of interaction between points (clustering or regularity). This paper
proposes an extension of the spatial multi-scale area-interaction
model to a spatio-temporal framework. Thismodel allows for inter-
action between points at different spatio-temporal scales and for
the inclusion of covariates. We present a simulation study and fit
thenewmodel to varicella cases registeredduring 2013 inValencia,
Spain.
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1. Introduction

Spatio-temporal patterns are increasingly observed in many different fields, including ecology,
epidemiology, seismology, astronomy and forestry. The common feature is that all observed events
have two basic characteristics: the location and the time of the event. In this paper we are mainly
concerned with epidemiology (Stallybrass, 1931), which studies the distribution, causes and control
of diseases in a defined human population. The locations of the occurrence of cases give information
on the spatial behavior of the disease, whereas the times, measured on different scales (days, weeks,
years, period of times), give insights on the temporal response of the overall process. An essential point
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to take into consideration is that people are not uniformly distributed in space, hence information on
the spatial distribution of the population at risk is crucial when analyzing spatio-temporal patterns of
diseases.

Realistic models to fit epidemiological data should incorporate spatio-temporal inhomogeneity
and allow for different types of dependence between points. One important class of suchmodels is the
family of Gibbs point processes, defined in terms of their probability density function (van Lieshout,
2000; Ripley, 1988, 1990), and, in particular, the sub-class of pairwise interaction processes. Well-
known examples of pairwise interaction processes are the Strauss model (Kelly and Ripley, 1976;
Strauss, 1975) or the hard core process, a particular case of the Strauss model where no points ever
come closer to each other than a given threshold. However, pairwise interactionmodels are not always
a suitable choice for fitting clustered patterns. A family of Markov point processes that can fit both
clustered and inhibitory patterns is that of the area- or quermass-interaction models (Baddeley and
van Lieshout, 1995; Kendall et al., 1999). These models are defined in terms of stochastic geometric
functionals and display interactions of all orders. Methods for inference and perfect simulation are
available in Dereudre et al. (2014), Häggström et al. (1999), Kendall (2000) and Møller and Helisová
(2010).

Most natural processes exhibit interaction at multiple scales. The classical Gibbs processes model
spatial interaction at a single scale, nevertheless multi-scale generalizations have been proposed in
the literature (Ambler and Silverman, 2010; Gregori et al., 2003; Picard et al., 2009). In this paper
we propose an extension of the spatial multi-scale area-interaction model to a spatio-temporal
framework.

The outline of the paper is as follows. Section 2 provides some preliminaries in relation to notation
and terminology. Section 3 gives the definition and Markov properties of our spatio-temporal multi-
scale area-interactionmodel. Section 4 adapts simulation algorithms, such as theMetropolis–Hastings
algorithm, to our context. Section 5 treats the logistic regression approach and presents a simulation
study. The model is applied to a varicella data set in Section 6. Section 7 presents final remarks and a
discussion of future work.

2. Preliminaries

A realization of a spatio-temporal point process X consists of a finite number n ≥ 0 of distinct
points (xi, ti), i = 1, . . . , n, that are observed within a compact spatial domain WS ⊂ R2 and time
interval WT ⊂ R. The pattern formed by the points will be denoted by x = {(xi, ti)}ni=1. For a
mathematically rigorous account, the reader is referred to Daley and Vere-Jones (2003, 2008).

We define the Euclidean norm ∥x∥ = (x21 + x22)
1/2 and the Euclidean metric dR2 (x, y) = ∥x − y∥

for x = (x1, x2) ∈ R2 and y = (y1, y2) ∈ R2. We need to treat space and time differently, thus
on R2

× R we consider the supremum norm ∥(x, t)∥∞ = max{∥x∥, |t|} and the supremum metric
d((x, t), (y, s)) = ∥(x, t) − (y, s)∥∞ = max{∥x − y∥, |t − s|}, where (x, t), (y, s) ∈ R2

× R. Note that
(R2

× R, d(·, ·)) as well as its restriction to WS × WT is a complete, separable metric space. We write
B(R2

× R) = B(R2) ⊗ B(R) for the Borel σ -algebra and ℓ for Lebesgue measure. We denote by ⊕ the
Minkowski addition of two sets A, B ⊂ R2, defined as the set A ⊕ B = {a + b : a ∈ A, b ∈ B}.

As stated in Section 1, Gibbs models form an important class of models able to fit epidemiological
data exhibiting spatio-temporal inhomogeneity and interaction betweenpoints. In space, theWidom–
Rowlinson penetrable sphere model (Widom and Rowlinson, 1970) produces clustered point patterns;
the more general area-interaction model (Baddeley and van Lieshout, 1995) fits both clustered
and inhibitory point patterns. In its most simple form, the area-interaction model is defined by its
probability density

p(x) = αλn(x)γ −A(x) (1)

with respect to a unit rate Poissonprocess onWS . Hereα is the normalizing constant, x is a spatial point
configuration inWS ⊂ R2, n(x) is the cardinality of x and A(x) is the area of the union of discs of radius
r centered at xi ∈ x restricted to WS . The positive scalars λ, γ and r > 0 are the parameters of the
model. Note that, as emphasized in van Lieshout (2000), Gibbsian interaction terms can be combined
to yieldmore complexmodels. Doing so, Ambler and Silverman (2010), Gregori et al. (2003) and Picard
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