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a b s t r a c t

We clarify relationships between conditional (CAR) and simultane-
ous (SAR) autoregressive models. We review the literature on this
topic and find that it is mostly incomplete. Our main result is that
a SAR model can be written as a unique CAR model, and while a
CAR model can be written as a SAR model, it is not unique. In fact,
we show how anymultivariate Gaussian distribution on a finite set
of points with a positive-definite covariance matrix can be written
as either a CAR or a SAR model. We illustrate how to obtain any
number of SAR covariance matrices from a single CAR covariance
matrix by using Givens rotation matrices on a simulated example.
We also discuss sparseness in the original CAR construction, and for
the resulting SAR weights matrix. For a real example, we use crime
data in 49 neighborhoods from Columbus, Ohio, and show that
a geostatistical model optimizes the likelihood much better than
typical first-order CAR models. We then use the implied weights
from the geostatistical model to estimate CAR model parameters
that provides the best overall optimization.

Published by Elsevier B.V.

1. Introduction

Cressie (1993, p. 8) divides statistical models for data collected at spatial locations into two broad
classes: (1) geostatistical models with continuous spatial support, and (2) lattice models, also called
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areal models (Banerjee et al., 2004), where data occur on a (possibly irregular) grid, or lattice, with
a countable set of nodes or locations. The two most common lattice models are the conditional
autoregressive (CAR) and simultaneous autoregressive (SAR) models, both notable for sparseness of
their precisionmatrices. These autoregressivemodels are ubiquitous inmany fields, including disease
mapping (e.g., Clayton and Kaldor, 1987; Cressie and Chan, 1989; Lawson, 2013), agriculture (Cullis
and Gleeson, 1991; Besag and Higdon, 1999), econometrics (Anselin, 1988; LeSage and Pace, 2009),
ecology (Lichstein et al., 2002; Kissling and Carl, 2008), and image analysis (Besag, 1986; Li, 2009).
CAR models form the basis for Gaussian Markov random fields (Rue and Held, 2005) and the popular
integratednested Laplace approximationmethods (INLA, Rue et al., 2009), and SARmodels are popular
in geographic information systems (GIS) with the GeoDa software (Anselin et al., 2006). Hence, both
CAR and SAR models serve as the basis for countless scientific conclusions. Because these are the two
most common classes of models for lattice data, it is natural to compare and contrast them. There has
been sporadic interest in studying the relationships between CAR and SAR models (e.g., Wall, 2004),
and how one model might or might not be expressed in terms of the other (Haining, 1990; Cressie,
1993; Martin, 1987; Waller and Gotway, 2004), but there is little clarity in the existing literature on
the relationships between these two classes of autoregressive models.

Historically, CAR and SAR models were obtained constructively, which naturally led to results
on conditions of the constructions that yielded positive-definite covariance matrices. However, our
goal is the opposite. We investigate how to obtain the properties of CAR and SAR models from a
positive definite covariance matrix. We aim to clarify, and add to, the existing literature on the
relationships between CAR and SAR covariance matrices. Cressie andWikle (2011, p. 185) show how
to obtain a CAR covariance matrix from a geostatistical covariance matrix, and, by extension, from
any valid covariance matrix. We add to this by showing that any positive-definite covariance matrix
for a multivariate Gaussian distribution on a finite set of points can be written as either a CAR or a
SAR covariance matrix, and hence any valid SAR covariance matrix can be expressed as a valid CAR
covariance matrix, and vice versa. This result shows that on a finite dimensional space, both SAR and
CARmodels are completely generalmodels for spatial covariance, able to capture any positive-definite
covariance.While CAR and SARmodels are among themost commonly-used spatial statisticalmodels,
this correspondence between them, and the generality of both models, has not been fully described
before now. These results also shed light on some previous literature. CAR and SAR models are often
developed with sparseness in mind, where sparseness is the notion that the precision matrix has
many zeros, allowing for the use of compact computer storage and fast computing algorithms for
sparse matrices. Our results do not necessarily lead to sparse precision matrices for the SAR or CAR
specifications, which is a desirable property for these models, so we spend some time investigating
this with examples and discussion.

This paper is organized as follows: In Section 2, we review SAR and CAR models and lay out
necessary conditions for these models. In Section 3, we provide theorems that show how to obtain
SAR and CAR covariancematrices from any positive definite covariancematrix, which also establishes
the relationship between CAR and SAR covariance matrices. In Section 4, we provide examples of
obtaining SAR covariance matrices from a CAR covariance matrix on fabricated data, and a real
example for obtaining a CAR covariance matrix from a geostatistical covariance matrix. Finally, in
Section 5, we conclude with a detailed discussion of the incomplete results of previous literature.

2. Review of SAR and CAR models

In what follows, we denote matrices with bold capital letters, and their ith row and jth column
with small case letters with subscripts i, j; for example, the i, jth element of C is ci,j. Vectors of fixed
values are denoted as lower case bold letters while vectors (or matrices) of random variables are bold,
capital, and italic; let Z ≡ (Z1, Z2, . . . , Zn)T be a vector of n randomvariables at the nodes of a graph (or
junctions of a lattice). The edges in the graph, or connections in the lattice, define neighbors, which are
used to model spatial dependency. Broad reviews of SAR and CAR can be found in Besag (1974), Wall
(2004), and Ver Hoef et al. (2018), and in many books (e.g., Anselin, 1988; Haining, 1990; Cressie,
1993; Schabenberger and Gotway, 2005; Cressie and Wikle, 2011; Banerjee et al., 2014).
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