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a b s t r a c t

We propose a new copula model for spatial data that are observed
repeatedly in time. The model is based on the assumption that
there exists a common factor that affects the measurements of a
process in space and in time. Unlike models based on multivari-
ate normality, our model can handle data with tail dependence
and asymmetry. The likelihood for the proposed model can be
obtained in a simple form and therefore parameter estimation is
quite fast. Simulation from this model is straightforward and data
can be predicted at any spatial location and time point. We use
simulation studies to show different types of dependencies, both in
space and in time, that can be generated by this model. We apply
the proposed copula model to hourly wind data and compare its
performance with some classical models for spatio-temporal data.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Flexible and tractable models for data are often required in real-world applications, but building
such models can be a challenging task if the data have complex structures. One example of such data
is measurements of a process taken in space and in time, such as daily temperature measurements
obtained at different weather stations or concentrations of a certain air pollutant measured by
balloons launched from different locations. The dependence between two measurements that are
made at different locations and at different times is usuallyweakerwith a larger distance and time lag.
Classicalmodels for datawith spatio-temporal dependence often assumemultivariate normalitywith
a spatio-temporal covariance matrix; see, for example, Gneiting (2002), Stein (2005) and Gneiting et
al. (2007) for a review of covariance functions.
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For non-Gaussian spatial data, Bárdossy (2006) introduced the chi-squared copula and Bárdossy
and Li (2008) proposed a v-transformed copula. These copula models are obtained from a non-
monotonic transformation of multivariate normal variables. They can handle dependence asymmetry
but cannot be used for modeling data with tail dependence. Furthermore, the likelihood for these
models is not tractable in high dimensions. To construct flexible distributions for spatial data and
to do the interpolation, vine copulas can be used. Gräler (2014) used spatial vine copulas to model
and interpolate data with very strong dependencies, and Erhardt et al. (2015) used C-vine copulas to
model the spatial dependence structure locally. Parameters in their model can be estimated using the
composite likelihood, and data can be interpolated at arbitrary spatial locations.

For data with spatio-temporal dependence, de Luna and Genton (2005) used vector autoregressive
models with spatial structure for time-forward predictions in environmental applications, but these
models are not computationally tractable if the innovation process is not Gaussian. Stroud et al.
(2011) proposed a model for nonstationary spatio-temporal data in which the mean function at each
time period is a locally-weighted mixture of linear regressions. The authors provided details for the
Gaussian case but did not study the dependence properties of the proposed models in the general
case. In practical applications, however, themultivariate normality assumption is not always suitable.
For example, it would be unsuitable for data with strong joint dependence in the tails (i.e., when
large/small values are simultaneously observed more often than predicted by the normal model), or
for data with reflection asymmetry (i.e., when large values are simultaneously observed more often
than small values, or vice versa). Fonseca and Steel (2011) introduced a model for spatio-temporal
data that can handle heavy tails. However, the likelihood function in that model is not available in
simple form, and it cannot handle dependence asymmetry. Schmidt et al. (2017) proposed a model
for a skewed spatio-temporal process. Their model is based on the combination of Gaussian processes
with purely spatial dependence structures and a purely temporal component. The joint density in that
model is not possible to obtain in a simple form and it cannot handle data with tail dependence; see
also the discussion by Genton and Hering (2017).

To overcome this problem, copulas can be used to construct flexible, multivariate distributions. A
copula is a multivariate cumulative distribution function (cdf) with uniform U(0, 1) marginals. Sklar
(1959) showed that for any continuous d-dimensional cdf F1,...,d with univariate marginals F1, . . . , Fd,
there exists a unique copula C1,...,d such that F1,...,d(z1, . . . , zd) = C1,...,d{F1(z1), . . . , Fd(zd)} for any
z1, . . . , zd. Copulas have been used in many different applications, such as modeling financial returns
data (Patton, 2006; Krupskii and Joe, 2013), hydrology data (Genest and Favre, 2007) and others.

Recently, Krupskii et al. (in press) introduced a copula model for spatial data with replicates and
without temporal dependence. The model is based on the process

W (s) = Z(s) + V0, s ∈ Rd,

where Z is a Gaussian process and V0 is a common factor that does not depend on Z or location s. In
this paper, we propose an extension of this model that is based on the process W measured in space
and in time:

W (s, t) = Z(s, t) + α(s, t)EP(t), s ∈ Rd, t ∈ R+. (1)

Here Z(s, t) is a Gaussian process in space and in time with zero mean, unit variance and covariance
matrix ΣZ, α(s, t) is a non-random function of space (s) and time (t), P(t) is a Poisson process with
intensity functionΛ(t) and Et∼i.i.d.Exp(1) are exponential factors that do not depend on Z(s, t) or on
location s.

The factors EP(t) allow for tail dependence for the copula corresponding to the joint distribution of
the process W (s, t) measured at different spatial locations and at different time points. The intensity
function, Λ(t), of the Poisson process P(t) controls the rate of decay of dependence over time. The
exponential distribution of EP(t) allows one to obtain the joint copula density in this model (1) in
closed form so that the model parameters can be efficiently estimated using the maximum likelihood
approach.

The rest of this paper is organized as follows. In Section 2 we define the model (1) for data
observed at different spatial locations and time points and study its dependence properties based
on the covariance function of Z(s, t) and the choice of α(s, t) and Λ(t). In Section 3 we generate
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