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a b s t r a c t

Deviation tests play an important role in testing distributional
hypotheses in point process statistics. Such tests are based on dif-
ferences between empirical summary functions and their theo-
retical counterparts, which depend on a distance variable r in a
user-specified interval I . These differences are summarized to a
single number, which serves then as the test statistic u. Statistical
experience indicates that different distances r have different influ-
ence on u. We propose scalings of the differences to equalize the
influence of the distances and show that the power of deviation
tests can be improved by them. We further study how the power
is affected by the other elements of deviation tests, which are the
choice of the summary function, the deviation measure and the in-
terval I . We consider in detail the construction of deviation tests
for the particular case of testing the random labeling hypothesis,
i.e. independence of themarks of amarked point process. By a large
simulation study we come to clear statements about the role of the
test elements. Furthermore, we demonstrate the potential of scal-
ing by a data example from the literature.
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1. Introduction

Testing statistical hypotheses is an important step in building statistical models. In point process
statistics, typical hypotheses are complete spatial randomness (CSR), independent marking or some
fitted model. Unlike in classical statistics, where null models are typically represented by a single
hypothesis, hypotheses in spatial statistics have a spatial dimension and therefore a multiple
character. Usually a summary function such as Ripley’s K -function is employed in the test.

In this paper, we consider the tests in a generalized form: their basis is some test function T (r),
where r is a distance variable, and this T (r) is not necessarily an unbiased (or ratio-unbiased) esti-
mator of some summary function. The name ‘‘deviation’’ emphasizes that the tests are based on the
differences between the empirical values of T (r) and their expectation under the null hypothesis,
which are called ‘‘residuals’’ in the following.

A problem is how to handle the residuals for different values of r . If there were a priori a single dis-
tance r∗ which is of main interest, then one could proceed as in classical tests by comparing the em-
pirical value T (r∗)with the theoretical value T0(r∗) for this r∗, i.e. consider the residual T (r∗)−T0(r∗).
However, since usually such a single special distance r∗ is not given, one would like to consider the
residuals simultaneously for all distances r in some interval I = [rmin, rmax]. Therefore, one is con-
fronted with a situation typical for multiple hypothesis testing (or multiple comparisons), see Bretz
et al. (2010).

The standard approach to resolve the multiple hypothesis testing problem in point process statis-
tics is the deviation test suggested by Diggle (1979). In this test, the residuals for all r in I are sum-
marized into a single number by some deviation measure, e.g. the maximum absolute residual in I .
This approach has analogues in classical statistics, namely the Kolmogorov–Smirnov and Cramér–von
Mises tests.

An alternative approach constructs envelopes around the theoretical function T0(r) and checks if
the empirical function is completely between the envelopes. Difficulties of this popularmethod,which
goes back to Ripley (1977), were discussed in detail by Loosmore and Ford (2006) and Grabarnik et al.
(2011). The present paper concentrates solely on the deviation test.

Though Diggle’s procedure is accepted as a standard in point process statistics, to our knowledge
there are no studies which explore its properties systematically. Several power comparisons for
different forms of deviation tests have been reported (e.g. Ripley, 1979; Gignoux et al., 1999; Thönnes
and van Lieshout, 1999; Baddeley et al., 2000; Grabarnik and Chiu, 2002; Ho and Chiu, 2006, 2009), but
these investigations concern only specific issues. In the present paper, we consider the construction
of deviation tests in detail and systematically and come to general recommendations for their use.

Our particular premise is that if there is not an a priori interesting distance r∗, then itmakes sense to
give similar importance to all residuals on the chosen interval of distances I . In the classical deviation
test this is not guaranteed because the distributions of the residuals for different distances r can differ
greatly. Thus it makes sense to transform given test functions and to scale the residuals in order to ob-
tain similar importance for all r in I .Wedemonstrate the effect of suchmodifications of deviation tests.

A summary function frequently used in point process statistics for stationary processes and in de-
viation tests is Ripley’s K -function (Ripley, 1976, 1977). For this function, commonly the transforma-
tion L(r) =

√
K(r)/π (for processes in R2) called L-function is used instead of K . This dates back

to Besag (1977) who found that under CSR a standard estimator of the L-function has approximately
constant variance over the distances r . This variance-stabilizing transformation leads to tests that
are considered ‘‘better’’ than tests based on the K -function. Variance-stabilizing transformations are
available also in some other cases, see e.g. Schladitz and Baddeley (2000) and Grabarnik and Chiu
(2002), where the fourth root of an originally used summary function (a third order analogue of
Ripley’s K function) was applied. Moreover, the Aitkin–Clayton transformation arcsin(

√
1 − ·) sta-

bilizes variances for the nearest neighbor distance distribution function (G-function) and the empty
space function/spherical contact distribution (F-function) (see Aitkin and Clayton, 1980). In this pa-
per, we employ the L-transformation tomark-weighted K -functions. Of course, other transformations
are possible to make the variance more stable, for example employing the log transformation of the
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